Answer
Verified
497.4k+ views
Hint: \[{{\left( 1+a \right)}^{m+n}}\] is similar to the binomial expansion of \[{{\left( a+b \right)}^{n}}\]. Find the expansion and substitute \[{{a}^{r}}={{a}^{m}}\] and \[{{a}^{r}}={{a}^{n}}\]. The simplification will state that the coefficient of both \[{{a}^{m}}\]and \[{{a}^{n}}\] is same.
Complete step-by-step Solution:
Given an expression \[{{\left( 1+a \right)}^{m+n}}\]. We need to prove that the expansion of \[{{\left( 1+a \right)}^{m+n}}\]will result in the coefficients \[{{a}^{m}}\]and \[{{a}^{n}}\] being equal.
We know the general term of expansion of \[{{\left( a+b \right)}^{n}}\], which is a binomial expansion.
It is possible to expand the polynomial \[{{\left( a+b \right)}^{n}}\]into a sum involving term of form \[xa{{b}^{z}}\], where exponents y and z are non-negative integers and \[n=y+z\], and co-efficient x of each-term is a specific positive integer.
\[{{\left( a+b \right)}^{n}}\] is expanded as, \[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\].
i.e. if a and b are real numbers and n is a positive integer then,
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+......+{}^{n}{{C}_{n}}{{b}^{n}}\]
where, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]for \[0\le r\le n\].
Therefore, general term or \[{{\left( r+1 \right)}^{th}}\]term in the expansion given by,
\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
Now, for \[{{\left( 1+a \right)}^{m+n}}={{\left( a+b \right)}^{n}}\].
Let’s put \[n=m+n\], a = 1 and b = a.
\[\begin{align}
& {{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}} \\
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{1}^{\left( n+m-r \right)}}{{\left( a \right)}^{r}} \\
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times {{1}^{\left( n+m-r \right)}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times 1 \\
\end{align}\]
We know \[{{1}^{\left( n+m-r \right)}}\]is equal to 1 i.e. 1 raised to any integer is 1.
\[{{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}-(1)\]
Now here we need to find the coefficients of \[{{a}^{m}}\]and \[{{a}^{n}}\]and prove that their coefficients are the same.
Finding coefficient of \[{{a}^{m}}\], let us put \[{{a}^{r}}={{a}^{m}}\].
\[\therefore r=m\]
Let us put r = m in equation (1).
\[{{T}_{m+1}}={}^{n+m}{{C}_{m}}{{a}^{m}}\]
\[{}^{n+m}{{C}_{m}}\]is of the form \[{}^{n}{{C}_{r}}\]where \[\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-m \right)!m!}{{a}^{m}} \\
& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{n!m!}{{a}^{m}} \\
\end{align}\]
Hence the coefficient of \[{{a}^{m}}\]is \[\dfrac{\left( n+m \right)!}{n!m!}\].
Now let us find the coefficient of \[{{a}^{n}}\].
Put, \[{{a}^{r}}={{a}^{n}}\Rightarrow r=n\].
Put r=n in equation (1).
\[\begin{align}
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}} \\
& {{T}_{n+1}}={}^{n+m}{{C}_{n}}{{a}^{n}} \\
& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-n \right)n!}\times {{a}^{n}} \\
& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{m!n!}{{a}^{n}} \\
\end{align}\]
Hence, the coefficient of \[{{a}^{n}}\]is \[\dfrac{\left( n+m \right)!}{m!n!}\].
\[\therefore \]Coefficient of \[{{a}^{m}}\]= coefficient of \[{{a}^{n}}=\dfrac{\left( n+m \right)!}{m!n!}\].
Hence proved.
Note: You can consider the expansion of \[{{\left( a+b \right)}^{n}}\]if you know it by heart. But it is also easy to derive. Remember to put \[{{a}^{r}}={{a}^{m}}\]and \[{{a}^{r}}={{a}^{n}}\]. Then only we can prove the coefficients are the same. Also remember the expansion of \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Complete step-by-step Solution:
Given an expression \[{{\left( 1+a \right)}^{m+n}}\]. We need to prove that the expansion of \[{{\left( 1+a \right)}^{m+n}}\]will result in the coefficients \[{{a}^{m}}\]and \[{{a}^{n}}\] being equal.
We know the general term of expansion of \[{{\left( a+b \right)}^{n}}\], which is a binomial expansion.
It is possible to expand the polynomial \[{{\left( a+b \right)}^{n}}\]into a sum involving term of form \[xa{{b}^{z}}\], where exponents y and z are non-negative integers and \[n=y+z\], and co-efficient x of each-term is a specific positive integer.
\[{{\left( a+b \right)}^{n}}\] is expanded as, \[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\].
i.e. if a and b are real numbers and n is a positive integer then,
\[{{\left( a+b \right)}^{n}}={}^{n}{{C}_{0}}{{a}^{n}}+{}^{n}{{C}_{1}}{{a}^{n-1}}{{b}^{1}}+{}^{n}{{C}_{2}}{{a}^{n-2}}{{b}^{2}}+......+{}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}+......+{}^{n}{{C}_{n}}{{b}^{n}}\]
where, \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\]for \[0\le r\le n\].
Therefore, general term or \[{{\left( r+1 \right)}^{th}}\]term in the expansion given by,
\[{{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}}\]
Now, for \[{{\left( 1+a \right)}^{m+n}}={{\left( a+b \right)}^{n}}\].
Let’s put \[n=m+n\], a = 1 and b = a.
\[\begin{align}
& {{T}_{r+1}}={}^{n}{{C}_{r}}{{a}^{n-r}}{{b}^{r}} \\
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{1}^{\left( n+m-r \right)}}{{\left( a \right)}^{r}} \\
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times {{1}^{\left( n+m-r \right)}}={}^{n+m}{{C}_{r}}{{a}^{r}}\times 1 \\
\end{align}\]
We know \[{{1}^{\left( n+m-r \right)}}\]is equal to 1 i.e. 1 raised to any integer is 1.
\[{{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}}-(1)\]
Now here we need to find the coefficients of \[{{a}^{m}}\]and \[{{a}^{n}}\]and prove that their coefficients are the same.
Finding coefficient of \[{{a}^{m}}\], let us put \[{{a}^{r}}={{a}^{m}}\].
\[\therefore r=m\]
Let us put r = m in equation (1).
\[{{T}_{m+1}}={}^{n+m}{{C}_{m}}{{a}^{m}}\]
\[{}^{n+m}{{C}_{m}}\]is of the form \[{}^{n}{{C}_{r}}\]where \[\dfrac{n!}{r!\left( n-r \right)!}\].
\[\begin{align}
& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-m \right)!m!}{{a}^{m}} \\
& {{T}_{m+1}}=\dfrac{\left( n+m \right)!}{n!m!}{{a}^{m}} \\
\end{align}\]
Hence the coefficient of \[{{a}^{m}}\]is \[\dfrac{\left( n+m \right)!}{n!m!}\].
Now let us find the coefficient of \[{{a}^{n}}\].
Put, \[{{a}^{r}}={{a}^{n}}\Rightarrow r=n\].
Put r=n in equation (1).
\[\begin{align}
& {{T}_{r+1}}={}^{n+m}{{C}_{r}}{{a}^{r}} \\
& {{T}_{n+1}}={}^{n+m}{{C}_{n}}{{a}^{n}} \\
& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{\left( n+m-n \right)n!}\times {{a}^{n}} \\
& {{T}_{n+1}}=\dfrac{\left( n+m \right)!}{m!n!}{{a}^{n}} \\
\end{align}\]
Hence, the coefficient of \[{{a}^{n}}\]is \[\dfrac{\left( n+m \right)!}{m!n!}\].
\[\therefore \]Coefficient of \[{{a}^{m}}\]= coefficient of \[{{a}^{n}}=\dfrac{\left( n+m \right)!}{m!n!}\].
Hence proved.
Note: You can consider the expansion of \[{{\left( a+b \right)}^{n}}\]if you know it by heart. But it is also easy to derive. Remember to put \[{{a}^{r}}={{a}^{m}}\]and \[{{a}^{r}}={{a}^{n}}\]. Then only we can prove the coefficients are the same. Also remember the expansion of \[{}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}\].
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE