Answer
Verified
497.4k+ views
Hint: For solving this question, we need to know about the basic concepts of binomial theorem and the basic properties of algebraic expansion raised to the power of n. The formula for ${{(a+b)}^{n}}$ is given by $\sum\limits_{r=0}^{n}{\dfrac{n!}{r!\left( n-r \right)!}{{a}^{r}}{{b}^{n-r}}}$. We will use this to obtain the ${{7}^{th}}$ term from the beginning and the ${{7}^{th}}$ term from the end.
Complete step-by-step answer:
While solving the problem we should know the basics of binomial theorem and how to expand an algebraic expression raised to the power n. Now, we know that the formula for ${{(a+b)}^{n}}$ is given by $\sum\limits_{r=0}^{n}{\dfrac{n!}{r!\left( n-r \right)!}{{a}^{n-r}}{{b}^{r}}}$. Thus, in general, the ${{r}^{th}}$ from the beginning would be $\dfrac{n!}{(r-1)!\left( n-r+1 \right)!}{{a}^{n-r+1}}{{b}^{r-1}}$. Thus, to solve this problem, we have the ${{7}^{th}}$ term as –
=$\dfrac{n!}{6!\left( n-6 \right)!}{{a}^{n-6}}{{b}^{6}}$
(Now, we know that a =${{2}^{\dfrac{1}{3}}}$ and b = ${{3}^{-\dfrac{1}{3}}}$, since, the expression here is ${{\left( {{2}^{\dfrac{1}{3}}}+{{3}^{-\dfrac{1}{3}}} \right)}^{n}}$)
= \[\dfrac{n!}{6!\left( n-6 \right)!}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6}}\] -- (1)
Now, the ${{7}^{th}}$ term from the end would be the ${{(n-6)}^{th}}$ term from the beginning. Thus, we have,
= $\dfrac{n!}{\left( n-6 \right)!6!}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{n-6}}$ -- (2)
Since, the ratio is 1:6. Thus, we have
$\dfrac{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6}}}{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{n-6}}}=\dfrac{1}{6}$
Thus,
${{\left( {{2}^{\dfrac{1}{3}}} \right)}^{(n-6)-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6-(n-6)}}=\dfrac{1}{6}$
${{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-12}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}$
${{\left( {{2}^{-\dfrac{1}{3}}} \right)}^{12-n}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}$
\[{{\left( {{2}^{-\dfrac{1}{3}}}\times {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{(2\times 3)}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{6}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{6}^{-\dfrac{1}{3}}} \right)}^{12-n}}={{6}^{-1}}\]
Now, we can compare the co-efficient to get the required value of n. We have,
$\dfrac{-(12-n)}{3}=-1$
-(12-n) = -3
12-n = 3
n = 9
Hence, the correct answer is (d) 9.
Note: We should be aware about the basic expansion because although we can expand algebraic expression raised to the power less than 3 by hand with ease, it becomes much more difficult to expand higher order terms such as in this case for power raised to 7. Thus, in such cases we need to remember the formula for the binomial theorem which can help us to get a particular coefficient value easily.
Complete step-by-step answer:
While solving the problem we should know the basics of binomial theorem and how to expand an algebraic expression raised to the power n. Now, we know that the formula for ${{(a+b)}^{n}}$ is given by $\sum\limits_{r=0}^{n}{\dfrac{n!}{r!\left( n-r \right)!}{{a}^{n-r}}{{b}^{r}}}$. Thus, in general, the ${{r}^{th}}$ from the beginning would be $\dfrac{n!}{(r-1)!\left( n-r+1 \right)!}{{a}^{n-r+1}}{{b}^{r-1}}$. Thus, to solve this problem, we have the ${{7}^{th}}$ term as –
=$\dfrac{n!}{6!\left( n-6 \right)!}{{a}^{n-6}}{{b}^{6}}$
(Now, we know that a =${{2}^{\dfrac{1}{3}}}$ and b = ${{3}^{-\dfrac{1}{3}}}$, since, the expression here is ${{\left( {{2}^{\dfrac{1}{3}}}+{{3}^{-\dfrac{1}{3}}} \right)}^{n}}$)
= \[\dfrac{n!}{6!\left( n-6 \right)!}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6}}\] -- (1)
Now, the ${{7}^{th}}$ term from the end would be the ${{(n-6)}^{th}}$ term from the beginning. Thus, we have,
= $\dfrac{n!}{\left( n-6 \right)!6!}{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{n-6}}$ -- (2)
Since, the ratio is 1:6. Thus, we have
$\dfrac{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6}}}{{{\left( {{2}^{\dfrac{1}{3}}} \right)}^{6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{n-6}}}=\dfrac{1}{6}$
Thus,
${{\left( {{2}^{\dfrac{1}{3}}} \right)}^{(n-6)-6}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{6-(n-6)}}=\dfrac{1}{6}$
${{\left( {{2}^{\dfrac{1}{3}}} \right)}^{n-12}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}$
${{\left( {{2}^{-\dfrac{1}{3}}} \right)}^{12-n}}{{\left( {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}$
\[{{\left( {{2}^{-\dfrac{1}{3}}}\times {{3}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{(2\times 3)}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{6}^{-\dfrac{1}{3}}} \right)}^{12-n}}=\dfrac{1}{6}\]
\[{{\left( {{6}^{-\dfrac{1}{3}}} \right)}^{12-n}}={{6}^{-1}}\]
Now, we can compare the co-efficient to get the required value of n. We have,
$\dfrac{-(12-n)}{3}=-1$
-(12-n) = -3
12-n = 3
n = 9
Hence, the correct answer is (d) 9.
Note: We should be aware about the basic expansion because although we can expand algebraic expression raised to the power less than 3 by hand with ease, it becomes much more difficult to expand higher order terms such as in this case for power raised to 7. Thus, in such cases we need to remember the formula for the binomial theorem which can help us to get a particular coefficient value easily.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE