In the figure above, find tan \[p{\text{ }}-\]cot R.
(A) 5
(B) \[\dfrac{1}{{13}}\]
(C) 0
(D) none of these
Answer
Verified
468k+ views
Hint: To solve this question, we must have an idea about Pythagoras theorem for right-angled triangles.
Here the above picture is a right-angled triangle.
The sides of right-angled triangle named as base, perpendicular, and hypotenuse \[\left[ {longest{\text{ }}side} \right]\] The angle of opposite side of hypotenuse is \[90^\circ .\]
According to Pythagoras theorem,
\[{\left( {hypotenuse} \right)^2} = {\text{ }}{\left( {Perpendicular} \right)^2} + {\text{ }}{\left( {Base} \right)^2}\]
\[ \Rightarrow \]hypotenuse \[ = \sqrt {{{\left( {perpendicular} \right)}^2} + {{\left( {Base} \right)}^2}} \]
\[ \Rightarrow \] we know that it \[\theta \] is the angle of a right-angled triangle,
Then, \[\tan \theta = \dfrac{{perpendicular}}{{base}}\]
\[\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{{base}}{{perpendicular}}\]
Complete step by step answer:
Given that
\[PQ{\text{ }} = {\text{ }}12{\text{ }}cm\]
\[PR{\text{ }} = {\text{ }}13{\text{ }}cm\]
\[\angle PQR = 90^\circ \]
At first, we have to find out \[QR\], the base of \[\Delta PQR\]
Here, \[PQ{\text{ }} = \] perpendicular to the triangle.
\[QR{\text{ }} = \] base of the triangle.
\[PR{\text{ }} = \] hypotenuse of the triangle.
By Pythagoras theorem,
\[ \Rightarrow {\left( {hypotenuse} \right)^2} = {\text{ }}{\left( {perpendicular} \right)^2} + {\text{ }}{\left( {Base} \right)^2}\]
\[ \Rightarrow \left( {P{R^2}} \right) = {\left( {PQ} \right)^2} + {\left( {QR} \right)^2}\]
\[ \Rightarrow {\left( {QR} \right)^2} = {\left( {PR} \right)^2} - {\left( {PQ} \right)^2}\]
\[ \Rightarrow QR = \sqrt {{{\left( {PR} \right)}^2} - {{\left( {PQ} \right)}^2}} \]
\[ = \sqrt {{{\left( {13} \right)}^2} - {{\left( {12} \right)}^2}} \] \[[{\text{ }}since,\;PR{\text{ }} = {\text{ }}13{\text{ }}cm\]
\[ \Rightarrow PQ{\text{ }} = {\text{ }}12{\text{ }}cm]\]
\[ = \sqrt {169 - 144} \]
\[ = \sqrt {25} = 5\]
\[\therefore \] base \[QR{\text{ }} = {\text{ }}5{\text{ }}cm.\]
Now, we calculate the value of tan p & cot R.
\[ \Rightarrow \tan P = \dfrac{{perpendicular}}{{Base}}\]
\[ = \dfrac{{QR}}{{PQ}} = \dfrac{5}{{12}}\]
[for angle P, the opposite side of angle is perpendicular \[\left( {QR} \right).\]Base is \[PQ\]. Opposite side of right angle is hypotenuse]
\[\cot R = \dfrac{{Base}}{{perpendicular}}\]
\[ = \dfrac{{QR}}{{PQ}} = \dfrac{5}{{12}}\] [for here angle R, the of angle opposite sides is perpendicular \[\left( {PR} \right)\] base is \[QR]\]
\[\therefore \,\,\tan \,P - \cot R = \dfrac{5}{{12}} - \dfrac{5}{{12}} = 0\]
\[\therefore \] option (c) is right.
Note: A right-angled triangle’s base is one of the sides that adjoins the 90-degree angle.
- The three main functions in trigonometry are sine, cosine, and tangent. It \[\theta \] is the angle of right-angled triangle then
\[ \Rightarrow \sin \theta = \dfrac{{perpendicular}}{{hypotenuse}},\cos \theta = \dfrac{{base}}{{hypotenuse}}\] when we solve this type of question, we need to remember all the formulas of trigonometry.
Here the above picture is a right-angled triangle.
The sides of right-angled triangle named as base, perpendicular, and hypotenuse \[\left[ {longest{\text{ }}side} \right]\] The angle of opposite side of hypotenuse is \[90^\circ .\]
According to Pythagoras theorem,
\[{\left( {hypotenuse} \right)^2} = {\text{ }}{\left( {Perpendicular} \right)^2} + {\text{ }}{\left( {Base} \right)^2}\]
\[ \Rightarrow \]hypotenuse \[ = \sqrt {{{\left( {perpendicular} \right)}^2} + {{\left( {Base} \right)}^2}} \]
\[ \Rightarrow \] we know that it \[\theta \] is the angle of a right-angled triangle,
Then, \[\tan \theta = \dfrac{{perpendicular}}{{base}}\]
\[\cot \theta = \dfrac{1}{{\tan \theta }} = \dfrac{{base}}{{perpendicular}}\]
Complete step by step answer:
Given that
\[PQ{\text{ }} = {\text{ }}12{\text{ }}cm\]
\[PR{\text{ }} = {\text{ }}13{\text{ }}cm\]
\[\angle PQR = 90^\circ \]
At first, we have to find out \[QR\], the base of \[\Delta PQR\]
Here, \[PQ{\text{ }} = \] perpendicular to the triangle.
\[QR{\text{ }} = \] base of the triangle.
\[PR{\text{ }} = \] hypotenuse of the triangle.
By Pythagoras theorem,
\[ \Rightarrow {\left( {hypotenuse} \right)^2} = {\text{ }}{\left( {perpendicular} \right)^2} + {\text{ }}{\left( {Base} \right)^2}\]
\[ \Rightarrow \left( {P{R^2}} \right) = {\left( {PQ} \right)^2} + {\left( {QR} \right)^2}\]
\[ \Rightarrow {\left( {QR} \right)^2} = {\left( {PR} \right)^2} - {\left( {PQ} \right)^2}\]
\[ \Rightarrow QR = \sqrt {{{\left( {PR} \right)}^2} - {{\left( {PQ} \right)}^2}} \]
\[ = \sqrt {{{\left( {13} \right)}^2} - {{\left( {12} \right)}^2}} \] \[[{\text{ }}since,\;PR{\text{ }} = {\text{ }}13{\text{ }}cm\]
\[ \Rightarrow PQ{\text{ }} = {\text{ }}12{\text{ }}cm]\]
\[ = \sqrt {169 - 144} \]
\[ = \sqrt {25} = 5\]
\[\therefore \] base \[QR{\text{ }} = {\text{ }}5{\text{ }}cm.\]
Now, we calculate the value of tan p & cot R.
\[ \Rightarrow \tan P = \dfrac{{perpendicular}}{{Base}}\]
\[ = \dfrac{{QR}}{{PQ}} = \dfrac{5}{{12}}\]
[for angle P, the opposite side of angle is perpendicular \[\left( {QR} \right).\]Base is \[PQ\]. Opposite side of right angle is hypotenuse]
\[\cot R = \dfrac{{Base}}{{perpendicular}}\]
\[ = \dfrac{{QR}}{{PQ}} = \dfrac{5}{{12}}\] [for here angle R, the of angle opposite sides is perpendicular \[\left( {PR} \right)\] base is \[QR]\]
\[\therefore \,\,\tan \,P - \cot R = \dfrac{5}{{12}} - \dfrac{5}{{12}} = 0\]
\[\therefore \] option (c) is right.
Note: A right-angled triangle’s base is one of the sides that adjoins the 90-degree angle.
- The three main functions in trigonometry are sine, cosine, and tangent. It \[\theta \] is the angle of right-angled triangle then
\[ \Rightarrow \sin \theta = \dfrac{{perpendicular}}{{hypotenuse}},\cos \theta = \dfrac{{base}}{{hypotenuse}}\] when we solve this type of question, we need to remember all the formulas of trigonometry.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
10 examples of evaporation in daily life with explanations
Differentiate between natural and artificial ecosy class 10 biology CBSE