Answer
Verified
459k+ views
Hint: To solve this question, we have been given a figure, where, $\angle ROQ = 90^\circ $ and $\angle ROP = 90^\circ $ then, on keeping $\angle ROP$ and $\angle ROQ$ equal, because the angles are equals to \[90^\circ ,\] then solving further we will get the required expression.
Complete step-by-step answer:
We have been given a figure, in it POQ is a line. We have also been given that the ray OR is perpendicular to line PQ. And, OS is another ray lying between rays OP and OR. We need to prove that $\angle ROS = \dfrac{1}{2}(\angle QOS - \angle POS).$
So, it is given that ray OR is perpendicular to line PQ, i.e., $OR \bot PQ$
From the figure we get that, $\angle ROP = 90^\circ $ and $\angle ROQ = 90^\circ $
So, we can put, $\angle ROP = \angle ROQ$ (because both the angles are equals to \[90^\circ \])
Since, it is given that OS is another ray lying between rays OP and OR.
$ \Rightarrow \angle ROP = \angle POS + \angle ROS$
Now, on putting, $\angle ROQ$in place of $\angle ROP$, because both the angles are equal to each other, we get
$\angle POS + \angle ROS = \angle ROQ$
Since in the question, it is given that, ray OR is perpendicular to line PQ.
$ \Rightarrow \angle POS + \angle ROS = \angle QOS - \angle ROS$
Now, on rearranging the above equation, we get
$2\angle ROS = \angle QOS - \angle POS$
$ \Rightarrow \angle ROS = \dfrac{1}{2}\angle QOS - \angle POS$
Hence proved, $\angle ROS = \dfrac{1}{2}(\angle QOS - \angle POS).$
Note: Before solving, students should carefully observe the given figure. And then using the given information, solve further. To solve these types of question, where we are supposed to prove something, it is usually advisable to start with one side i.e., either start from L.H.S or R.H.S., then eventually we can prove the equation.
Complete step-by-step answer:
We have been given a figure, in it POQ is a line. We have also been given that the ray OR is perpendicular to line PQ. And, OS is another ray lying between rays OP and OR. We need to prove that $\angle ROS = \dfrac{1}{2}(\angle QOS - \angle POS).$
So, it is given that ray OR is perpendicular to line PQ, i.e., $OR \bot PQ$
From the figure we get that, $\angle ROP = 90^\circ $ and $\angle ROQ = 90^\circ $
So, we can put, $\angle ROP = \angle ROQ$ (because both the angles are equals to \[90^\circ \])
Since, it is given that OS is another ray lying between rays OP and OR.
$ \Rightarrow \angle ROP = \angle POS + \angle ROS$
Now, on putting, $\angle ROQ$in place of $\angle ROP$, because both the angles are equal to each other, we get
$\angle POS + \angle ROS = \angle ROQ$
Since in the question, it is given that, ray OR is perpendicular to line PQ.
$ \Rightarrow \angle POS + \angle ROS = \angle QOS - \angle ROS$
Now, on rearranging the above equation, we get
$2\angle ROS = \angle QOS - \angle POS$
$ \Rightarrow \angle ROS = \dfrac{1}{2}\angle QOS - \angle POS$
Hence proved, $\angle ROS = \dfrac{1}{2}(\angle QOS - \angle POS).$
Note: Before solving, students should carefully observe the given figure. And then using the given information, solve further. To solve these types of question, where we are supposed to prove something, it is usually advisable to start with one side i.e., either start from L.H.S or R.H.S., then eventually we can prove the equation.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE