Answer
Verified
394.5k+ views
Hint: We know that, in a right triangle, the square of length of hypotenuse is equal to the sum of squares of the other two edges. Using this theorem, we can first find the length of side BD. And then, again by using the same theorem, we can find the value of $x$.
Complete step-by-step solution:
We have the following figure.
We can clearly see in the given figure that AB = AC, and it is also given that the triangle is isosceles.
Also, we can see that the measure of $\angle BDC={{90}^{\circ }}$.
We all know very well that the angles along a straight line is always equal to ${{180}^{\circ }}$.
Hence, we can say that $\angle BDC+\angle BDA={{180}^{\circ }}$.
We know that $\angle BDC={{90}^{\circ }}$. And so, we can say that
$\angle BDA={{180}^{\circ }}-{{90}^{\circ }}={{90}^{\circ }}$.
So, in triangle ABD, we can use the Pythagoras theorem. We have,
${{\left( AB \right)}^{2}}={{\left( BD \right)}^{2}}+{{\left( AD \right)}^{2}}$.
We can see that AB = 9 cm and AD = 7 cm.
Thus, we get
${{\left( 9 \right)}^{2}}={{\left( BD \right)}^{2}}+{{\left( 7 \right)}^{2}}$.
On simplification, we get
${{\left( BD \right)}^{2}}=81-49$.
Hence, we now have $BD=\sqrt{32}$ cm.
Now, using Pythagoras theorem in triangle BDC, we get
${{\left( BC \right)}^{2}}={{\left( BD \right)}^{2}}+{{\left( DC \right)}^{2}}$.
We now know that BD = $\sqrt{32}$ cm and DC = 2 cm. Thus, we get
${{\left( x \right)}^{2}}={{\left( \sqrt{32} \right)}^{2}}+{{\left( 2 \right)}^{2}}$.
We can simplify the above equation, to get
${{x}^{2}}=32+4$.
And so, we can write
$x=\sqrt{36}$.
Thus, $x=6$ cm.
Hence, the value of $x$ is 6 cm.
Note: We must note that the hypotenuse is the side opposite to the right angle, and we must take care of this while using the Pythagoras theorem. Also, we must take care that the length of any side of a triangle can never be a negative value. And so, we have ignored the value $x=-6$.
Complete step-by-step solution:
We have the following figure.
We can clearly see in the given figure that AB = AC, and it is also given that the triangle is isosceles.
Also, we can see that the measure of $\angle BDC={{90}^{\circ }}$.
We all know very well that the angles along a straight line is always equal to ${{180}^{\circ }}$.
Hence, we can say that $\angle BDC+\angle BDA={{180}^{\circ }}$.
We know that $\angle BDC={{90}^{\circ }}$. And so, we can say that
$\angle BDA={{180}^{\circ }}-{{90}^{\circ }}={{90}^{\circ }}$.
So, in triangle ABD, we can use the Pythagoras theorem. We have,
${{\left( AB \right)}^{2}}={{\left( BD \right)}^{2}}+{{\left( AD \right)}^{2}}$.
We can see that AB = 9 cm and AD = 7 cm.
Thus, we get
${{\left( 9 \right)}^{2}}={{\left( BD \right)}^{2}}+{{\left( 7 \right)}^{2}}$.
On simplification, we get
${{\left( BD \right)}^{2}}=81-49$.
Hence, we now have $BD=\sqrt{32}$ cm.
Now, using Pythagoras theorem in triangle BDC, we get
${{\left( BC \right)}^{2}}={{\left( BD \right)}^{2}}+{{\left( DC \right)}^{2}}$.
We now know that BD = $\sqrt{32}$ cm and DC = 2 cm. Thus, we get
${{\left( x \right)}^{2}}={{\left( \sqrt{32} \right)}^{2}}+{{\left( 2 \right)}^{2}}$.
We can simplify the above equation, to get
${{x}^{2}}=32+4$.
And so, we can write
$x=\sqrt{36}$.
Thus, $x=6$ cm.
Hence, the value of $x$ is 6 cm.
Note: We must note that the hypotenuse is the side opposite to the right angle, and we must take care of this while using the Pythagoras theorem. Also, we must take care that the length of any side of a triangle can never be a negative value. And so, we have ignored the value $x=-6$.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers