Answer
Verified
472.2k+ views
Hint: In this particular question use the concept that in a rhombus all the side lengths are equal and the adjacent sides w.r.t the particular sides of the given quadrilateral are perpendicular to each other and later on in the solution use the concept of Pythagoras theorem so use these concepts to reach the solution of the question.
Complete step-by-step answer:
Proof –
As we see from the figure that in the given quadrilateral YMXN the adjacent sides are perpendicular to each other and opposite sides are parallel to each other but the adjacent side lengths are unequal.
So YMXN is a rectangle.
Now it is given that PQRS is a rhombus.
As we know that in a rhombus all the side lengths are equal.
Therefore, PQ = QR = RS = SP................. (1)
Now all the four triangles formed by the sides of the rhombus PQRS and the rectangle as shown in the figure are right angles.
So according to Pythagoras theorem, Hypotenuse square is equal to the sum of the square of base and perpendicular so we have,
$ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}$
Now in right angle triangle PSY we have,
$ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}$
$ \Rightarrow {\left( {{\text{SP}}} \right)^2} = {\left( {{\text{YS}}} \right)^2} + {\left( {PY} \right)^2}$.................. (2)
Now in right angle triangle SNR we have,
$ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}$
$ \Rightarrow {\left( {{\text{RS}}} \right)^2} = {\left( {{\text{SN}}} \right)^2} + {\left( {{\text{NR}}} \right)^2}$.................. (3)
Now in right angle triangle RXQ we have,
$ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}$
$ \Rightarrow {\left( {{\text{QR}}} \right)^2} = {\left( {{\text{QX}}} \right)^2} + {\left( {XR} \right)^2}$.................. (4)
Now add equation (2), (3) and (4) we have,
$ \Rightarrow {\left( {{\text{SP}}} \right)^2} + {\left( {{\text{RS}}} \right)^2} + {\left( {{\text{QR}}} \right)^2} = {\left( {{\text{YS}}} \right)^2} + {\left( {PY} \right)^2} + {\left( {{\text{SN}}} \right)^2} + {\left( {{\text{NR}}} \right)^2} + {\left( {{\text{QX}}} \right)^2} + {\left( {XR} \right)^2}$
Now from equation (1), PQ = QR = RS = SP we have,
$ \Rightarrow {\left( {{\text{PQ}}} \right)^2} + {\left( {{\text{PQ}}} \right)^2} + {\left( {{\text{PQ}}} \right)^2} = {\left( {{\text{YS}}} \right)^2} + {\left( {PY} \right)^2} + {\left( {{\text{SN}}} \right)^2} + {\left( {{\text{NR}}} \right)^2} + {\left( {{\text{QX}}} \right)^2} + {\left( {XR} \right)^2}$
$ \Rightarrow 3{\left( {{\text{PQ}}} \right)^2} = {\left( {{\text{YS}}} \right)^2} + {\left( {PY} \right)^2} + {\left( {{\text{SN}}} \right)^2} + {\left( {{\text{NR}}} \right)^2} + {\left( {{\text{QX}}} \right)^2} + {\left( {XR} \right)^2}$
Hence proved.
Note: Whenever we face such types of questions the key concept we have to remember is the Pythagoras theorem which is Hypotenuse square is equal to the sum of the square of base and perpendicular so apply this in all of the triangles except PMQ as above and add them we will get the required answer.
Complete step-by-step answer:
Proof –
As we see from the figure that in the given quadrilateral YMXN the adjacent sides are perpendicular to each other and opposite sides are parallel to each other but the adjacent side lengths are unequal.
So YMXN is a rectangle.
Now it is given that PQRS is a rhombus.
As we know that in a rhombus all the side lengths are equal.
Therefore, PQ = QR = RS = SP................. (1)
Now all the four triangles formed by the sides of the rhombus PQRS and the rectangle as shown in the figure are right angles.
So according to Pythagoras theorem, Hypotenuse square is equal to the sum of the square of base and perpendicular so we have,
$ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}$
Now in right angle triangle PSY we have,
$ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}$
$ \Rightarrow {\left( {{\text{SP}}} \right)^2} = {\left( {{\text{YS}}} \right)^2} + {\left( {PY} \right)^2}$.................. (2)
Now in right angle triangle SNR we have,
$ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}$
$ \Rightarrow {\left( {{\text{RS}}} \right)^2} = {\left( {{\text{SN}}} \right)^2} + {\left( {{\text{NR}}} \right)^2}$.................. (3)
Now in right angle triangle RXQ we have,
$ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}$
$ \Rightarrow {\left( {{\text{QR}}} \right)^2} = {\left( {{\text{QX}}} \right)^2} + {\left( {XR} \right)^2}$.................. (4)
Now add equation (2), (3) and (4) we have,
$ \Rightarrow {\left( {{\text{SP}}} \right)^2} + {\left( {{\text{RS}}} \right)^2} + {\left( {{\text{QR}}} \right)^2} = {\left( {{\text{YS}}} \right)^2} + {\left( {PY} \right)^2} + {\left( {{\text{SN}}} \right)^2} + {\left( {{\text{NR}}} \right)^2} + {\left( {{\text{QX}}} \right)^2} + {\left( {XR} \right)^2}$
Now from equation (1), PQ = QR = RS = SP we have,
$ \Rightarrow {\left( {{\text{PQ}}} \right)^2} + {\left( {{\text{PQ}}} \right)^2} + {\left( {{\text{PQ}}} \right)^2} = {\left( {{\text{YS}}} \right)^2} + {\left( {PY} \right)^2} + {\left( {{\text{SN}}} \right)^2} + {\left( {{\text{NR}}} \right)^2} + {\left( {{\text{QX}}} \right)^2} + {\left( {XR} \right)^2}$
$ \Rightarrow 3{\left( {{\text{PQ}}} \right)^2} = {\left( {{\text{YS}}} \right)^2} + {\left( {PY} \right)^2} + {\left( {{\text{SN}}} \right)^2} + {\left( {{\text{NR}}} \right)^2} + {\left( {{\text{QX}}} \right)^2} + {\left( {XR} \right)^2}$
Hence proved.
Note: Whenever we face such types of questions the key concept we have to remember is the Pythagoras theorem which is Hypotenuse square is equal to the sum of the square of base and perpendicular so apply this in all of the triangles except PMQ as above and add them we will get the required answer.
Recently Updated Pages
What is the maximum resistance which can be made using class 10 physics CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE