
In the Fraunhofer diffraction experiment, $ L $ is the distance between the screen and the obstacle, $ b $ is the size of the obstacle, and $ \lambda $ is the wavelength of incident light. The general condition for the applicability of Fraunhofer diffraction is
(A) $ \dfrac{{{b^2}}}{{L\lambda }} \gg 1 $
(B) $ \dfrac{{{b^2}}}{{L\lambda }} = 1 $
(C) $ \dfrac{{{b^2}}}{{L\lambda }} \ll 1 $
(D) $ \dfrac{{{b^2}}}{{L\lambda }} \ne 1 $
Answer
428.7k+ views
Hint :Fraunhofer diffraction experiment can only be used when the diffraction pattern is viewed at a long distance from the diffracting object. Hence, the value of $ L $ which is the distance between the screen and obstacle is very large.
Complete Step By Step Answer:
Diffraction can be defined as the bending or turning of the waves when it encounters an obstacle or passes through a thin slit, into the region of the shadow geometrically of the obstacle.
Diffraction can also be defined in simple words as the spreading of the waves at an opening or a slit.
Diffraction is of two types: Fresnel Diffraction and Fraunhofer Diffraction.
Fresnel Diffraction is used when the distance of the source of light and the display screen is within a finite distance of the obstacle.
As the waves emitted by a point source are spherical, the waves reaching the obstacle are spherical.
However, Fraunhofer diffraction is used when the light source and the screen are located at an infinite distance from the obstacle.
As the waves have traveled infinite distances, the radius of the spherical waves is infinite. For a section of the waves that are to be considered for the experiment, the waves can be considered as parallel waves, as a small part of the infinitely large circle is a straight line.
Hence, Fraunhofer diffraction is used when the distance of the obstacle from the source is very large, and also when it is viewed at the focal plane of the imaging lens.
Now, we are given that the distance between the screen and the obstacle is $ L $
As the diffraction occurring here is of Fraunhofer type, we can conclude that the value of $ L $ is near to infinite.
As it is present in the denominator, the overall value is very less than $ 1 $ .
Hence, to conduct the Fraunhofer diffraction experiment, the given value must be very less than $ 1 $ .
Hence, the correct answer is Option $ (C) $ .
Note :
Here, as it is given that the diffraction experiment conducted here is of the Fraunhofer type, we can derive the general condition required for the experiment to be true. If we use the Fresnel diffraction experiment, we also need the relation between the distance of source and obstacle and the size of the obstacle.
Complete Step By Step Answer:
Diffraction can be defined as the bending or turning of the waves when it encounters an obstacle or passes through a thin slit, into the region of the shadow geometrically of the obstacle.
Diffraction can also be defined in simple words as the spreading of the waves at an opening or a slit.
Diffraction is of two types: Fresnel Diffraction and Fraunhofer Diffraction.
Fresnel Diffraction is used when the distance of the source of light and the display screen is within a finite distance of the obstacle.
As the waves emitted by a point source are spherical, the waves reaching the obstacle are spherical.
However, Fraunhofer diffraction is used when the light source and the screen are located at an infinite distance from the obstacle.
As the waves have traveled infinite distances, the radius of the spherical waves is infinite. For a section of the waves that are to be considered for the experiment, the waves can be considered as parallel waves, as a small part of the infinitely large circle is a straight line.
Hence, Fraunhofer diffraction is used when the distance of the obstacle from the source is very large, and also when it is viewed at the focal plane of the imaging lens.
Now, we are given that the distance between the screen and the obstacle is $ L $
As the diffraction occurring here is of Fraunhofer type, we can conclude that the value of $ L $ is near to infinite.
As it is present in the denominator, the overall value is very less than $ 1 $ .
Hence, to conduct the Fraunhofer diffraction experiment, the given value must be very less than $ 1 $ .
Hence, the correct answer is Option $ (C) $ .
Note :
Here, as it is given that the diffraction experiment conducted here is of the Fraunhofer type, we can derive the general condition required for the experiment to be true. If we use the Fresnel diffraction experiment, we also need the relation between the distance of source and obstacle and the size of the obstacle.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
What are the elders in Goa nostalgic about class 11 social science CBSE

Define least count of vernier callipers How do you class 11 physics CBSE

Write the differences between monocot plants and dicot class 11 biology CBSE

Which of the following is not a feature of the election class 11 social science CBSE

The mass of oxalic acid crystals H2C2O42H2O required class 11 chemistry CBSE

How many squares are there in a chess board A 1296 class 11 maths CBSE
