Answer
Verified
497.1k+ views
Hint: Two sides of an isosceles triangle is equal. Pythagoras theorem can be given as ${{\left( \text{hypotaneous} \right)}^{\text{2}}}\text{=}{{\left( \text{base} \right)}^{\text{2}}}\text{+}{{\left( \text{perpendicular} \right)}^{\text{2}}}$. Using these two things the desired result can be obtained.
Complete step-by-step answer:
We have an isosceles triangle ABC with$\angle C={{90}^{o}}$ and hence sides AC and BC are equal to each other, as in isosceles triangle two sides are equal. Hence, diagram of $\Delta ABC$can be represented as
Where AC = BC and $\angle C={{90}^{o}}$
Now, we need to prove the relation given as
$A{{B}^{2}}=2A{{C}^{2}}$ ………………….. (i)
So, let us calculate the value of $A{{B}^{2}}$in terms of $A{{C}^{2}}$to prove the above equation (i).
As we know any right angle triangle will follow the Pythagoras property which can be given as
${{\left( \text{hypotaneous} \right)}^{\text{2}}}\text{=}{{\left( \text{base} \right)}^{\text{2}}}\text{+}{{\left( \text{perpendicular} \right)}^{\text{2}}}$………… (iii)
Hence, we can write the equation (iii) in terms of sides of $\Delta ABC$ as
${{\left( AB \right)}^{2}}={{\left( BC \right)}^{2}}+{{\left( AC \right)}^{2}}$…………… (iv)
Now, as the given triangle is isosceles, therefore AC=BC from the figure; and hence, we can replace BC by AC in the equation (iv), so, we get
$\begin{align}
& {{\left( AB \right)}^{2}}={{\left( AC \right)}^{2}}+{{\left( AC \right)}^{2}} \\
& \Rightarrow {{\left( AB \right)}^{2}}=2{{\left( AC \right)}^{2}} \\
\end{align}$
Hence, equation (i) or the given relation is proved.
Note:
One can go wrong with the Pythagoras theorem. One may put the value of base or perpendicular in place of hypotenuse or vice-versa may also happen. Hence, be clear with the terms of the Pythagoras theorem.
One can get angles A and B as ${{45}^{o}}$. As both are equal and summation of all the angles of the triangle is ${{180}^{0}}$. Now, take $\sin {{45}^{o}}$in the triangle with respect to angle B.
Hence $\sin B=\sin {{45}^{o}}=\dfrac{AC}{AB}$
Now, put $\sin {{45}^{o}}=\dfrac{1}{\sqrt{2}}$ and square both sides.
We will get the same result as given in the question.
Complete step-by-step answer:
We have an isosceles triangle ABC with$\angle C={{90}^{o}}$ and hence sides AC and BC are equal to each other, as in isosceles triangle two sides are equal. Hence, diagram of $\Delta ABC$can be represented as
Where AC = BC and $\angle C={{90}^{o}}$
Now, we need to prove the relation given as
$A{{B}^{2}}=2A{{C}^{2}}$ ………………….. (i)
So, let us calculate the value of $A{{B}^{2}}$in terms of $A{{C}^{2}}$to prove the above equation (i).
As we know any right angle triangle will follow the Pythagoras property which can be given as
${{\left( \text{hypotaneous} \right)}^{\text{2}}}\text{=}{{\left( \text{base} \right)}^{\text{2}}}\text{+}{{\left( \text{perpendicular} \right)}^{\text{2}}}$………… (iii)
Hence, we can write the equation (iii) in terms of sides of $\Delta ABC$ as
${{\left( AB \right)}^{2}}={{\left( BC \right)}^{2}}+{{\left( AC \right)}^{2}}$…………… (iv)
Now, as the given triangle is isosceles, therefore AC=BC from the figure; and hence, we can replace BC by AC in the equation (iv), so, we get
$\begin{align}
& {{\left( AB \right)}^{2}}={{\left( AC \right)}^{2}}+{{\left( AC \right)}^{2}} \\
& \Rightarrow {{\left( AB \right)}^{2}}=2{{\left( AC \right)}^{2}} \\
\end{align}$
Hence, equation (i) or the given relation is proved.
Note:
One can go wrong with the Pythagoras theorem. One may put the value of base or perpendicular in place of hypotenuse or vice-versa may also happen. Hence, be clear with the terms of the Pythagoras theorem.
One can get angles A and B as ${{45}^{o}}$. As both are equal and summation of all the angles of the triangle is ${{180}^{0}}$. Now, take $\sin {{45}^{o}}$in the triangle with respect to angle B.
Hence $\sin B=\sin {{45}^{o}}=\dfrac{AC}{AB}$
Now, put $\sin {{45}^{o}}=\dfrac{1}{\sqrt{2}}$ and square both sides.
We will get the same result as given in the question.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE