In the given figure, ABCD is a trapezium with ${\text{AB}}\ parallel {\text{DC}}$. If $\Delta AED$ is similar to $\Delta BEC$. Prove that AD = BC
Answer
Verified
507.3k+ views
Hint- Check for the relation between corresponding angles and sides of both triangles.
Given: \[ABCD\] is a trapezium with ${\text{AB}}\parallel {\text{DC}}$.
Diagonals $AC$ and $BD$ intersect at point $E$.
To prove: ${\text{AD = BC}}$
Now, $\Delta AED \sim \Delta BEC{\text{ }}\left( {\because {\text{Given}}} \right)$
$\therefore \dfrac{{{\text{AE}}}}{{{\text{BE}}}}{\text{ = }}\dfrac{{{\text{ED}}}}{{{\text{EC}}}}{\text{ = }}\dfrac{{{\text{AD}}}}{{{\text{BC}}}}{\text{ }} \ldots \ldots \left( 1 \right)\left( {{\text{corresponding sides are proportional}}} \right)$
In \[\Delta {\text{ABE}}\]and \[\Delta {\text{CDE}}\]:
\[
\angle {\text{AEB = }}\angle {\text{CED }}\left( {{\text{vertically opposite angles}}} \right) \\
\angle {\text{EAB}} = {\text{ }}\angle {\text{ECD }}\left( {{\text{alternate angles}}} \right) \\
\]
Hence, by AA similarity, we can say
\[\Delta {\text{ABE}} \sim \Delta {\text{CDE }}\]
Now, \[\dfrac{{{\text{AB}}}}{{{\text{CD}}}} = \dfrac{{{\text{EB}}}}{{{\text{ED}}}} = \dfrac{{{\text{AE}}}}{{{\text{EC}}}}{\text{ }}\left( {\because {\text{corresponding sides are proportional}}} \right)\]
Therefore, \[\dfrac{{{\text{EC}}}}{{{\text{ED}}}} = \dfrac{{{\text{AE}}}}{{{\text{EB}}}}{\text{ }} \ldots \ldots \left( 2 \right)\]
From \[\left( 1 \right)\]and \[\left( 2 \right)\], we get
\[\dfrac{{{\text{AD}}}}{{{\text{BC}}}} = \dfrac{{{\text{ED}}}}{{{\text{EC}}}}\]
As we know, \[{\text{ED = EC}}\]
\[
\Rightarrow \dfrac{{{\text{AD}}}}{{{\text{BC}}}} = 1{\text{ }} \\
\therefore {\text{ AD = BC}} \\
\]
Hence Proved.
Note- Two triangles are similar if their corresponding angles are congruent and corresponding sides are proportional. There are many criterions of similarity and many properties of similar triangles which come handy while solving problems like these.
Given: \[ABCD\] is a trapezium with ${\text{AB}}\parallel {\text{DC}}$.
Diagonals $AC$ and $BD$ intersect at point $E$.
To prove: ${\text{AD = BC}}$
Now, $\Delta AED \sim \Delta BEC{\text{ }}\left( {\because {\text{Given}}} \right)$
$\therefore \dfrac{{{\text{AE}}}}{{{\text{BE}}}}{\text{ = }}\dfrac{{{\text{ED}}}}{{{\text{EC}}}}{\text{ = }}\dfrac{{{\text{AD}}}}{{{\text{BC}}}}{\text{ }} \ldots \ldots \left( 1 \right)\left( {{\text{corresponding sides are proportional}}} \right)$
In \[\Delta {\text{ABE}}\]and \[\Delta {\text{CDE}}\]:
\[
\angle {\text{AEB = }}\angle {\text{CED }}\left( {{\text{vertically opposite angles}}} \right) \\
\angle {\text{EAB}} = {\text{ }}\angle {\text{ECD }}\left( {{\text{alternate angles}}} \right) \\
\]
Hence, by AA similarity, we can say
\[\Delta {\text{ABE}} \sim \Delta {\text{CDE }}\]
Now, \[\dfrac{{{\text{AB}}}}{{{\text{CD}}}} = \dfrac{{{\text{EB}}}}{{{\text{ED}}}} = \dfrac{{{\text{AE}}}}{{{\text{EC}}}}{\text{ }}\left( {\because {\text{corresponding sides are proportional}}} \right)\]
Therefore, \[\dfrac{{{\text{EC}}}}{{{\text{ED}}}} = \dfrac{{{\text{AE}}}}{{{\text{EB}}}}{\text{ }} \ldots \ldots \left( 2 \right)\]
From \[\left( 1 \right)\]and \[\left( 2 \right)\], we get
\[\dfrac{{{\text{AD}}}}{{{\text{BC}}}} = \dfrac{{{\text{ED}}}}{{{\text{EC}}}}\]
As we know, \[{\text{ED = EC}}\]
\[
\Rightarrow \dfrac{{{\text{AD}}}}{{{\text{BC}}}} = 1{\text{ }} \\
\therefore {\text{ AD = BC}} \\
\]
Hence Proved.
Note- Two triangles are similar if their corresponding angles are congruent and corresponding sides are proportional. There are many criterions of similarity and many properties of similar triangles which come handy while solving problems like these.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE