Answer
Verified
470.1k+ views
Hint: To solve this question, we will first check the possibility of A value. Then putting the possible value of A in the above equation we will obtain the value of B. After that we will check the error. We can also do this by an alternative method which we will discuss in note.
Complete step-by-step answer:
The given equation is $BA \times B3 = 57A$
Here A is in the unit place of the product side or we can say in the right hand side which means when we will multiply BA with B3, the product of multiplication of the unit place of both the terms of the left hand side must contain A in its unit place.
That means when we will multiply 3 with A, their product value must contain A in unit place.
If we will check the possibility, then two possibilities arrive. i.e. either A=0 or A=5 .
$BA \times B3 = 57A$
As B is in the 10’s place, then expanding the equation we get,
$\left( {10 \times B + A} \right) \times \left( {10 \times B + 3} \right) = \left( {57 \times 10} \right) + A$
$ \Rightarrow \left( {10B + A} \right) \times \left( {10B + 3} \right) = 570 + A$
$ \Rightarrow 100{B^2} + 10(A \times B) + 30B + 3A = 570 + A$
Subtracting A from both sides we get,
$100{B^2} + 10(A \times B) + 30B + 2A = 570$……………..(1)
For A=0
Putting A=0 in equation 1 we get,
$100{B^2} + 30B = 570$
Dividing 10 on each side we get,
$10{B^2} + 3B = 57$………..(2)
No B satisfies this as
$3B = 7$
For A=5
Putting A=5 in equation 1 we get,
$100{B^2} + 80B + 10 = 570$
Subtracting 10 from both side and then dividing both side with 10 we get,
$10{B^2} + 8B = 56$…………….(3)
$ \Rightarrow 5{B^2} + 4B = 28 = 20 + 8$
Hence B=2
Hence the positional value of B and A is 2, 5 respectively.
So, the correct answer is “Option D”.
Note: Checking error : $25 \times 23 = 575$. Error checked.
For step-2, you have to check it by multiplying 3 with 0 to 1.
You can use middle term factorization method or can put the formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ to get the value of B in equation 2 and 3.
You might mistaken the terms of equation in the question i.e. AB is multiplication of A and B, B3 as 3 multiplied with B and 57A as multiplication of 57 and A.
You can also solve it using an alternative method, by checking through options. ( if options are given)
Complete step-by-step answer:
The given equation is $BA \times B3 = 57A$
Here A is in the unit place of the product side or we can say in the right hand side which means when we will multiply BA with B3, the product of multiplication of the unit place of both the terms of the left hand side must contain A in its unit place.
That means when we will multiply 3 with A, their product value must contain A in unit place.
If we will check the possibility, then two possibilities arrive. i.e. either A=0 or A=5 .
$BA \times B3 = 57A$
As B is in the 10’s place, then expanding the equation we get,
$\left( {10 \times B + A} \right) \times \left( {10 \times B + 3} \right) = \left( {57 \times 10} \right) + A$
$ \Rightarrow \left( {10B + A} \right) \times \left( {10B + 3} \right) = 570 + A$
$ \Rightarrow 100{B^2} + 10(A \times B) + 30B + 3A = 570 + A$
Subtracting A from both sides we get,
$100{B^2} + 10(A \times B) + 30B + 2A = 570$……………..(1)
For A=0
Putting A=0 in equation 1 we get,
$100{B^2} + 30B = 570$
Dividing 10 on each side we get,
$10{B^2} + 3B = 57$………..(2)
No B satisfies this as
$3B = 7$
For A=5
Putting A=5 in equation 1 we get,
$100{B^2} + 80B + 10 = 570$
Subtracting 10 from both side and then dividing both side with 10 we get,
$10{B^2} + 8B = 56$…………….(3)
$ \Rightarrow 5{B^2} + 4B = 28 = 20 + 8$
Hence B=2
Hence the positional value of B and A is 2, 5 respectively.
So, the correct answer is “Option D”.
Note: Checking error : $25 \times 23 = 575$. Error checked.
For step-2, you have to check it by multiplying 3 with 0 to 1.
You can use middle term factorization method or can put the formula $\dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ to get the value of B in equation 2 and 3.
You might mistaken the terms of equation in the question i.e. AB is multiplication of A and B, B3 as 3 multiplied with B and 57A as multiplication of 57 and A.
You can also solve it using an alternative method, by checking through options. ( if options are given)
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE