Answer
Verified
476.1k+ views
Hint: In the given question we can solve the question by proving triangle DFG and triangle DAB are similar to each other and in the similar triangles ratio of corresponding sides are equal.
Complete step by step answer:
In triangle DFG and triangle DAB
$\angle DFG=\angle DAB$ $\left\{ \begin{align}
& \because FG||AB\, \\
& \therefore \angle DFG=\angle DAB\,\text{due}\,\text{to}\,\text{corresponding}\,\text{angle} \\
\end{align} \right\}$
$\angle ADB=\angle FDG$ $\left\{ \because \,Common\,Angle \right\}$
$\therefore \angle DGF=\angle DBA$
So By AA similarity we can say \[\Delta DFG\approx \Delta DAB\]
So we can say the ratio of corresponding sides is equal.
$\dfrac{DF}{DA}=\dfrac{FG}{AB}$ .......................................................(i)
As in trapezium $EF||AB||DC$
$\dfrac{AF}{DF}=\dfrac{BE}{EC}$
As given in question $\dfrac{BE}{EC}=\dfrac{3}{4}$
So we can write
$\dfrac{AF}{DF}=\dfrac{3}{4}$
On adding 1 in both side of equation
$\dfrac{AF}{DF}+1=\dfrac{3}{4}+1$
$\dfrac{AF+DF}{DF}=\dfrac{3+4}{4}$
$\dfrac{AD}{DF}=\dfrac{7}{4}$ $\left\{ \because AF+FD=AD \right\}$
$\dfrac{DF}{AD}=\dfrac{4}{7}$
We can use this value in equation (i)
Hence we have
$\dfrac{FG}{AB}=\dfrac{4}{7}$
$FG=\dfrac{4}{7}AB$......................................(ii)
Now in triangle compare $\Delta \text{BEG}$ and $\Delta \text{BCD}$ $\angle \text{BEG=}\angle \text{BCD}$ [corresponding angles ]
$\angle \text{B}=\angle \text{B}$ [ Common in both triangle ]
Now by AA criterion both and are similar.
$\therefore $$\Delta \text{BEG}$$\sim $ $\Delta \text{BCD}$ .
That will give us $\dfrac{\text{BE}}{\text{BC}}=\dfrac{\text{EG}}{\text{CD}}$ [similarity triangle]
Now we have given $\dfrac{\text{BE}}{\text{EC}}=\dfrac{\text{3}}{4}$
$\therefore $ $\dfrac{\text{EC}}{\text{BE}}$ $=\dfrac{4}{3}$
Add one both side $\dfrac{\text{EC}}{\text{BE}}+1=\dfrac{4}{3}+1$
$\dfrac{\text{EC+BE}}{\text{BE}}=\dfrac{4+3}{3}$
$\dfrac{\text{BC}}{\text{BE}}=\dfrac{7}{3}\text{ }\!\![\!\!\text{ BE+EC=BC }\!\!]\!\!\text{ }$
So, $\dfrac{\text{BE}}{\text{BC}}=\dfrac{3}{7}$
Got, $\dfrac{\text{BE}}{\text{BC}}=\dfrac{\text{EG}}{\text{CD}}$
from above calculation
$\dfrac{\text{EG}}{\text{CD}}=\dfrac{3}{7}$
$\text{EG=}\dfrac{3}{7}\times \text{CD}$
We have,$\text{CD=2AB}$ (Given)
$\text{EG=}\dfrac{3}{7}\times \text{2AB}$ ...... (iii)
Now add (ii) and (iii) equations
$\text{FG+EG=}\dfrac{4}{7}\text{AB+}\dfrac{6}{7}\text{AB}$
$\Rightarrow \text{EF=}\dfrac{10}{7}\text{AB}$
$7\text{EF=10AB}$
Note: We can say two triangles are similar if all three sides or all three angles are equal. So if in two triangles two angles are equal then the third angle will also be equal. So from this rule we say triangles are similar to each other by AA similarity.
Complete step by step answer:
In triangle DFG and triangle DAB
$\angle DFG=\angle DAB$ $\left\{ \begin{align}
& \because FG||AB\, \\
& \therefore \angle DFG=\angle DAB\,\text{due}\,\text{to}\,\text{corresponding}\,\text{angle} \\
\end{align} \right\}$
$\angle ADB=\angle FDG$ $\left\{ \because \,Common\,Angle \right\}$
$\therefore \angle DGF=\angle DBA$
So By AA similarity we can say \[\Delta DFG\approx \Delta DAB\]
So we can say the ratio of corresponding sides is equal.
$\dfrac{DF}{DA}=\dfrac{FG}{AB}$ .......................................................(i)
As in trapezium $EF||AB||DC$
$\dfrac{AF}{DF}=\dfrac{BE}{EC}$
As given in question $\dfrac{BE}{EC}=\dfrac{3}{4}$
So we can write
$\dfrac{AF}{DF}=\dfrac{3}{4}$
On adding 1 in both side of equation
$\dfrac{AF}{DF}+1=\dfrac{3}{4}+1$
$\dfrac{AF+DF}{DF}=\dfrac{3+4}{4}$
$\dfrac{AD}{DF}=\dfrac{7}{4}$ $\left\{ \because AF+FD=AD \right\}$
$\dfrac{DF}{AD}=\dfrac{4}{7}$
We can use this value in equation (i)
Hence we have
$\dfrac{FG}{AB}=\dfrac{4}{7}$
$FG=\dfrac{4}{7}AB$......................................(ii)
Now in triangle compare $\Delta \text{BEG}$ and $\Delta \text{BCD}$ $\angle \text{BEG=}\angle \text{BCD}$ [corresponding angles ]
$\angle \text{B}=\angle \text{B}$ [ Common in both triangle ]
Now by AA criterion both and are similar.
$\therefore $$\Delta \text{BEG}$$\sim $ $\Delta \text{BCD}$ .
That will give us $\dfrac{\text{BE}}{\text{BC}}=\dfrac{\text{EG}}{\text{CD}}$ [similarity triangle]
Now we have given $\dfrac{\text{BE}}{\text{EC}}=\dfrac{\text{3}}{4}$
$\therefore $ $\dfrac{\text{EC}}{\text{BE}}$ $=\dfrac{4}{3}$
Add one both side $\dfrac{\text{EC}}{\text{BE}}+1=\dfrac{4}{3}+1$
$\dfrac{\text{EC+BE}}{\text{BE}}=\dfrac{4+3}{3}$
$\dfrac{\text{BC}}{\text{BE}}=\dfrac{7}{3}\text{ }\!\![\!\!\text{ BE+EC=BC }\!\!]\!\!\text{ }$
So, $\dfrac{\text{BE}}{\text{BC}}=\dfrac{3}{7}$
Got, $\dfrac{\text{BE}}{\text{BC}}=\dfrac{\text{EG}}{\text{CD}}$
from above calculation
$\dfrac{\text{EG}}{\text{CD}}=\dfrac{3}{7}$
$\text{EG=}\dfrac{3}{7}\times \text{CD}$
We have,$\text{CD=2AB}$ (Given)
$\text{EG=}\dfrac{3}{7}\times \text{2AB}$ ...... (iii)
Now add (ii) and (iii) equations
$\text{FG+EG=}\dfrac{4}{7}\text{AB+}\dfrac{6}{7}\text{AB}$
$\Rightarrow \text{EF=}\dfrac{10}{7}\text{AB}$
$7\text{EF=10AB}$
Note: We can say two triangles are similar if all three sides or all three angles are equal. So if in two triangles two angles are equal then the third angle will also be equal. So from this rule we say triangles are similar to each other by AA similarity.
Recently Updated Pages
How is abiogenesis theory disproved experimentally class 12 biology CBSE
What is Biological Magnification
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
A Paragraph on Pollution in about 100-150 Words
Discuss the main reasons for poverty in India