![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
In the trapezium ABC, $\text{AB}\parallel \text{DA}$ and $\text{DC=2AB}$ .EF drawn parallel to AB cuts AD in F and BC in E such that $\dfrac{\text{BE}}{\text{EC}}=\dfrac{\text{3}}{4}$ . Diagonal DB intersects EF at G. Prove that, $7\text{FE=10AB}$ .
![seo images](https://www.vedantu.com/question-sets/30bf71cf-965e-468f-b6a5-401cb41b63cc8923160447956708696.png)
Answer
485.7k+ views
Hint: In the given question we can solve the question by proving triangle DFG and triangle DAB are similar to each other and in the similar triangles ratio of corresponding sides are equal.
Complete step by step answer:
In triangle DFG and triangle DAB
$\angle DFG=\angle DAB$ $\left\{ \begin{align}
& \because FG||AB\, \\
& \therefore \angle DFG=\angle DAB\,\text{due}\,\text{to}\,\text{corresponding}\,\text{angle} \\
\end{align} \right\}$
$\angle ADB=\angle FDG$ $\left\{ \because \,Common\,Angle \right\}$
$\therefore \angle DGF=\angle DBA$
So By AA similarity we can say \[\Delta DFG\approx \Delta DAB\]
So we can say the ratio of corresponding sides is equal.
$\dfrac{DF}{DA}=\dfrac{FG}{AB}$ .......................................................(i)
As in trapezium $EF||AB||DC$
$\dfrac{AF}{DF}=\dfrac{BE}{EC}$
As given in question $\dfrac{BE}{EC}=\dfrac{3}{4}$
So we can write
$\dfrac{AF}{DF}=\dfrac{3}{4}$
On adding 1 in both side of equation
$\dfrac{AF}{DF}+1=\dfrac{3}{4}+1$
$\dfrac{AF+DF}{DF}=\dfrac{3+4}{4}$
$\dfrac{AD}{DF}=\dfrac{7}{4}$ $\left\{ \because AF+FD=AD \right\}$
$\dfrac{DF}{AD}=\dfrac{4}{7}$
We can use this value in equation (i)
Hence we have
$\dfrac{FG}{AB}=\dfrac{4}{7}$
$FG=\dfrac{4}{7}AB$......................................(ii)
Now in triangle compare $\Delta \text{BEG}$ and $\Delta \text{BCD}$ $\angle \text{BEG=}\angle \text{BCD}$ [corresponding angles ]
$\angle \text{B}=\angle \text{B}$ [ Common in both triangle ]
Now by AA criterion both and are similar.
$\therefore $$\Delta \text{BEG}$$\sim $ $\Delta \text{BCD}$ .
That will give us $\dfrac{\text{BE}}{\text{BC}}=\dfrac{\text{EG}}{\text{CD}}$ [similarity triangle]
Now we have given $\dfrac{\text{BE}}{\text{EC}}=\dfrac{\text{3}}{4}$
$\therefore $ $\dfrac{\text{EC}}{\text{BE}}$ $=\dfrac{4}{3}$
Add one both side $\dfrac{\text{EC}}{\text{BE}}+1=\dfrac{4}{3}+1$
$\dfrac{\text{EC+BE}}{\text{BE}}=\dfrac{4+3}{3}$
$\dfrac{\text{BC}}{\text{BE}}=\dfrac{7}{3}\text{ }\!\![\!\!\text{ BE+EC=BC }\!\!]\!\!\text{ }$
So, $\dfrac{\text{BE}}{\text{BC}}=\dfrac{3}{7}$
Got, $\dfrac{\text{BE}}{\text{BC}}=\dfrac{\text{EG}}{\text{CD}}$
from above calculation
$\dfrac{\text{EG}}{\text{CD}}=\dfrac{3}{7}$
$\text{EG=}\dfrac{3}{7}\times \text{CD}$
We have,$\text{CD=2AB}$ (Given)
$\text{EG=}\dfrac{3}{7}\times \text{2AB}$ ...... (iii)
Now add (ii) and (iii) equations
$\text{FG+EG=}\dfrac{4}{7}\text{AB+}\dfrac{6}{7}\text{AB}$
$\Rightarrow \text{EF=}\dfrac{10}{7}\text{AB}$
$7\text{EF=10AB}$
Note: We can say two triangles are similar if all three sides or all three angles are equal. So if in two triangles two angles are equal then the third angle will also be equal. So from this rule we say triangles are similar to each other by AA similarity.
Complete step by step answer:
In triangle DFG and triangle DAB
$\angle DFG=\angle DAB$ $\left\{ \begin{align}
& \because FG||AB\, \\
& \therefore \angle DFG=\angle DAB\,\text{due}\,\text{to}\,\text{corresponding}\,\text{angle} \\
\end{align} \right\}$
$\angle ADB=\angle FDG$ $\left\{ \because \,Common\,Angle \right\}$
$\therefore \angle DGF=\angle DBA$
So By AA similarity we can say \[\Delta DFG\approx \Delta DAB\]
So we can say the ratio of corresponding sides is equal.
$\dfrac{DF}{DA}=\dfrac{FG}{AB}$ .......................................................(i)
As in trapezium $EF||AB||DC$
$\dfrac{AF}{DF}=\dfrac{BE}{EC}$
As given in question $\dfrac{BE}{EC}=\dfrac{3}{4}$
So we can write
$\dfrac{AF}{DF}=\dfrac{3}{4}$
On adding 1 in both side of equation
$\dfrac{AF}{DF}+1=\dfrac{3}{4}+1$
$\dfrac{AF+DF}{DF}=\dfrac{3+4}{4}$
$\dfrac{AD}{DF}=\dfrac{7}{4}$ $\left\{ \because AF+FD=AD \right\}$
$\dfrac{DF}{AD}=\dfrac{4}{7}$
We can use this value in equation (i)
Hence we have
$\dfrac{FG}{AB}=\dfrac{4}{7}$
$FG=\dfrac{4}{7}AB$......................................(ii)
Now in triangle compare $\Delta \text{BEG}$ and $\Delta \text{BCD}$ $\angle \text{BEG=}\angle \text{BCD}$ [corresponding angles ]
$\angle \text{B}=\angle \text{B}$ [ Common in both triangle ]
Now by AA criterion both and are similar.
$\therefore $$\Delta \text{BEG}$$\sim $ $\Delta \text{BCD}$ .
That will give us $\dfrac{\text{BE}}{\text{BC}}=\dfrac{\text{EG}}{\text{CD}}$ [similarity triangle]
Now we have given $\dfrac{\text{BE}}{\text{EC}}=\dfrac{\text{3}}{4}$
$\therefore $ $\dfrac{\text{EC}}{\text{BE}}$ $=\dfrac{4}{3}$
Add one both side $\dfrac{\text{EC}}{\text{BE}}+1=\dfrac{4}{3}+1$
$\dfrac{\text{EC+BE}}{\text{BE}}=\dfrac{4+3}{3}$
$\dfrac{\text{BC}}{\text{BE}}=\dfrac{7}{3}\text{ }\!\![\!\!\text{ BE+EC=BC }\!\!]\!\!\text{ }$
So, $\dfrac{\text{BE}}{\text{BC}}=\dfrac{3}{7}$
Got, $\dfrac{\text{BE}}{\text{BC}}=\dfrac{\text{EG}}{\text{CD}}$
from above calculation
$\dfrac{\text{EG}}{\text{CD}}=\dfrac{3}{7}$
$\text{EG=}\dfrac{3}{7}\times \text{CD}$
We have,$\text{CD=2AB}$ (Given)
$\text{EG=}\dfrac{3}{7}\times \text{2AB}$ ...... (iii)
Now add (ii) and (iii) equations
$\text{FG+EG=}\dfrac{4}{7}\text{AB+}\dfrac{6}{7}\text{AB}$
$\Rightarrow \text{EF=}\dfrac{10}{7}\text{AB}$
$7\text{EF=10AB}$
Note: We can say two triangles are similar if all three sides or all three angles are equal. So if in two triangles two angles are equal then the third angle will also be equal. So from this rule we say triangles are similar to each other by AA similarity.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The area of a 6m wide road outside a garden in all class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
What is the electric flux through a cube of side 1 class 10 physics CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The radius and height of a cylinder are in the ratio class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Why is there a time difference of about 5 hours between class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Change the following sentences into negative and interrogative class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write a letter to the principal requesting him to grant class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Write an application to the principal requesting five class 10 english CBSE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)