
In two concentric circles, chord AB of the outer circles cuts the inner circle at C and D. Prove that AC=BD.
Answer
603.6k+ views
Hint: In order to prove this question we will first draw a perpendicular on a line and proceed further by using the property of the circle as the perpendicular drawn from the center of a circle to a chord bisects the chord of the circle.
Complete step-by-step answer:
Let a line intersects two concentric circles with center O at A, B, C and D .
To Prove:
AB= CD
Construction – Draw OM perpendicular from O on a line.
Proof:
We know that the perpendicular drawn from the center of a circle to the chord bisects the chord.
Here, AD is a chord of a larger circle.
${\text{OM}} \bot {\text{AD}}$ is drawn from O.
OM bisects AD as ${\text{OM}} \bot {\text{AD}}$
${\text{AM}} = {\text{ MD}}.........{\text{(1)}}$
Here, BC is the chord of the smaller circle.
OM bisects BC as ${\text{OM}} \bot {\text{ BC}}$ .
${\text{BM}} = {\text{MC}}..........{\text{(2)}}$
From (1) and (2),
On subtracting equation (1) and from (2)
$
{\text{AM - BM}} = {\text{MD - MC}} \\
{\text{AB}} = {\text{CD}} \\
$
Hence, ${\text{AB}} = {\text{CD}}$
Note: In order to solve this question, we use the property of the circles. So remember all the properties of the circles. Also remember when a line bisects the other line perpendicularly; it divides the line into two equal parts. Also be familiar with the terms like chord, secant, tangent. A secant is simply a line that intersects two points of the circle.
Complete step-by-step answer:
Let a line intersects two concentric circles with center O at A, B, C and D .
To Prove:
AB= CD
Construction – Draw OM perpendicular from O on a line.
Proof:
We know that the perpendicular drawn from the center of a circle to the chord bisects the chord.
Here, AD is a chord of a larger circle.
${\text{OM}} \bot {\text{AD}}$ is drawn from O.
OM bisects AD as ${\text{OM}} \bot {\text{AD}}$
${\text{AM}} = {\text{ MD}}.........{\text{(1)}}$
Here, BC is the chord of the smaller circle.
OM bisects BC as ${\text{OM}} \bot {\text{ BC}}$ .
${\text{BM}} = {\text{MC}}..........{\text{(2)}}$
From (1) and (2),
On subtracting equation (1) and from (2)
$
{\text{AM - BM}} = {\text{MD - MC}} \\
{\text{AB}} = {\text{CD}} \\
$
Hence, ${\text{AB}} = {\text{CD}}$
Note: In order to solve this question, we use the property of the circles. So remember all the properties of the circles. Also remember when a line bisects the other line perpendicularly; it divides the line into two equal parts. Also be familiar with the terms like chord, secant, tangent. A secant is simply a line that intersects two points of the circle.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

