Answer
Verified
498.9k+ views
Hint: In order to prove this question we will first draw a perpendicular on a line and proceed further by using the property of the circle as the perpendicular drawn from the center of a circle to a chord bisects the chord of the circle.
Complete step-by-step answer:
Let a line intersects two concentric circles with center O at A, B, C and D .
To Prove:
AB= CD
Construction – Draw OM perpendicular from O on a line.
Proof:
We know that the perpendicular drawn from the center of a circle to the chord bisects the chord.
Here, AD is a chord of a larger circle.
${\text{OM}} \bot {\text{AD}}$ is drawn from O.
OM bisects AD as ${\text{OM}} \bot {\text{AD}}$
${\text{AM}} = {\text{ MD}}.........{\text{(1)}}$
Here, BC is the chord of the smaller circle.
OM bisects BC as ${\text{OM}} \bot {\text{ BC}}$ .
${\text{BM}} = {\text{MC}}..........{\text{(2)}}$
From (1) and (2),
On subtracting equation (1) and from (2)
$
{\text{AM - BM}} = {\text{MD - MC}} \\
{\text{AB}} = {\text{CD}} \\
$
Hence, ${\text{AB}} = {\text{CD}}$
Note: In order to solve this question, we use the property of the circles. So remember all the properties of the circles. Also remember when a line bisects the other line perpendicularly; it divides the line into two equal parts. Also be familiar with the terms like chord, secant, tangent. A secant is simply a line that intersects two points of the circle.
Complete step-by-step answer:
Let a line intersects two concentric circles with center O at A, B, C and D .
To Prove:
AB= CD
Construction – Draw OM perpendicular from O on a line.
Proof:
We know that the perpendicular drawn from the center of a circle to the chord bisects the chord.
Here, AD is a chord of a larger circle.
${\text{OM}} \bot {\text{AD}}$ is drawn from O.
OM bisects AD as ${\text{OM}} \bot {\text{AD}}$
${\text{AM}} = {\text{ MD}}.........{\text{(1)}}$
Here, BC is the chord of the smaller circle.
OM bisects BC as ${\text{OM}} \bot {\text{ BC}}$ .
${\text{BM}} = {\text{MC}}..........{\text{(2)}}$
From (1) and (2),
On subtracting equation (1) and from (2)
$
{\text{AM - BM}} = {\text{MD - MC}} \\
{\text{AB}} = {\text{CD}} \\
$
Hence, ${\text{AB}} = {\text{CD}}$
Note: In order to solve this question, we use the property of the circles. So remember all the properties of the circles. Also remember when a line bisects the other line perpendicularly; it divides the line into two equal parts. Also be familiar with the terms like chord, secant, tangent. A secant is simply a line that intersects two points of the circle.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
10 examples of evaporation in daily life with explanations
On the outline map of India mark the following appropriately class 10 social science. CBSE
Which winds account for rainfall along the Malabar class 10 social science CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Write a newspaper report on a The Jallianwala Bagh class 10 social science CBSE
Write a letter to the collector of your district complaining class 10 english CBSE