
In $\vartriangle ABC$, \[CD \bot AB\], \[CA = 2AD\] and \[BD = 3AD\]. Prove that \[\angle BCA = 90^\circ \].
Answer
466.2k+ views
Hint: Here, we will prove \[\angle BCA = 90^\circ \] by using Pythagoras theorem. First we will draw the diagram based on the given information. We will apply Pythagoras theorem in all the right angle triangles to find unknown sides. Pythagoras theorem is applied only to right angled triangles and not other triangles. It states that the square of hypotenuse is equal to the sum of squares of the other two sides. Hypotenuse is the longest side.
Formula Used:
Pythagoras Theorem, \[{h^2} = {a^2} + {b^2}\] , where, \[h\]is the hypotenuse and \[a\] and \[b\] are the length of the base and the perpendicular sides respectively.
Complete step-by-step answer:
We will draw a $\vartriangle ABC$ and then draw a perpendicular from the vertex \[C\] to \[AB\] such that \[CD \bot AB\].
Also, let the length of the side \[AD = x\]
Hence, according to the question,
Since, \[CA = 2AD\]
Therefore, \[CA = 2AD = 2x\]
Also, \[BD = 3AD = 3x\]
Now, in $\vartriangle ADC$ which is right angled at \[\angle D\] (Because \[CD \bot AB\]),
We will apply Pythagoras Theorem, i.e.
\[{h^2} = {a^2} + {b^2}\] , where, \[h\] is the hypotenuse and \[a\] and \[b\] are the length of the base and the perpendicular sides respectively.
Hence, by applying Pythagoras theorem in $\vartriangle ADC$,
\[{\left( {AC} \right)^2} = {\left( {AD} \right)^2} + {\left( {CD} \right)^2}\]
\[ \Rightarrow {\left( {2x} \right)^2} = {\left( x \right)^2} + {\left( {CD} \right)^2}\]
Hence, solving further,
\[ \Rightarrow {\left( {CD} \right)^2} = 4{x^2} - {x^2} = 3{x^2}\]
Taking square root on both sides,
\[ \Rightarrow CD = \sqrt 3 x\]
Hence, the length of \[CD = \sqrt 3 x\]
Also, after taking the square root, we have not considered the negative value because the length of the side of a triangle can never be negative.
Now, similarly, we will apply the Pythagoras Theorem in $\vartriangle CDB$ which is right angled at \[\angle D\] (Because \[CD \bot AB\]),
\[{\left( {BC} \right)^2} = {\left( {BD} \right)^2} + {\left( {CD} \right)^2}\]
\[ \Rightarrow {\left( {BC} \right)^2} = {\left( {3x} \right)^2} + {\left( {\sqrt 3 x} \right)^2}\]
Hence, solving further,
\[ \Rightarrow {\left( {BC} \right)^2} = 9{x^2} + 3{x^2} = 12{x^2}\]
Taking square root on both sides,
\[ \Rightarrow BC = 2\sqrt 3 x\]
Hence, the length of \[BC = 2\sqrt 3 x\]
Again, after taking the square root, we have not considered the negative value because the length of the side of a triangle can never be negative.
Now, finally in order to prove that \[\angle BCA = 90^\circ \],
We will try to prove that $\vartriangle BCA$ is a right angled triangle right angled at \[\angle C\].
Hence, applying Pythagoras Theorem in $\vartriangle BCA$,
\[{\left( {AB} \right)^2} = {\left( {AC} \right)^2} + {\left( {BC} \right)^2}\]
Now, the length of side \[AB = AD + BD = x + 3x = 4x\]
And, it is given that \[AC = 2x\]
Also, we have proved that \[BC = 2\sqrt 3 x\]
\[ \Rightarrow {\left( {4x} \right)^2} = {\left( {2x} \right)^2} + {\left( {2\sqrt 3 x} \right)^2}\]
\[ \Rightarrow 16{x^2} = 4{x^2} + 12{x^2}\]
Hence, solving further,
\[ \Rightarrow 16{x^2} = 16{x^2}\]
Clearly, LHS \[ = \]RHS
Therefore, Pythagoras theorem holds true in this triangle.
Hence, $\vartriangle BCA$ is a right angled triangle right angled at \[\angle C\].
Therefore, it is proved that \[\angle BCA = 90^\circ \]
Hence, proved
Note: An alternate way to solve this question is:
We will use trigonometric identities in a right angled triangle.
As we know, in a right angled triangle \[\cos \theta = \dfrac{B}{H}\], where \[B\]is the base and \[H\] is the hypotenuse.
Therefore, in $\vartriangle ADC$
\[\cos \theta = \dfrac{B}{H} = \dfrac{{AD}}{{AC}} = \dfrac{x}{{2x}} = \dfrac{1}{2}\]
Now, using trigonometric tables, we know that \[\cos 60^\circ = \dfrac{1}{2}\]
\[ \Rightarrow \cos \theta = \cos 60^\circ \]
Therefore, \[\angle CAD = \theta = 60^\circ \]
Now, let us assume that \[\angle BCA \ne 90^\circ \]
Hence, in $\vartriangle BCA$,
\[\cos \theta = \dfrac{B}{H} = \dfrac{{AC}}{{AB}} = \dfrac{{2x}}{{4x}} = \dfrac{1}{2}\]
Now, using trigonometric tables, we know that \[\cos 60^\circ = \dfrac{1}{2}\]
\[ \Rightarrow \cos \theta = \cos 60^\circ \]
Therefore, \[\angle CAD = \theta = 60^\circ \]
But, we have already proved that \[\angle CAD = \theta = 60^\circ \]
Hence, this is a contradictory situation.
Therefore, our assumption is not correct and \[\angle BCA = 90^\circ \]
Hence, proved
Formula Used:
Pythagoras Theorem, \[{h^2} = {a^2} + {b^2}\] , where, \[h\]is the hypotenuse and \[a\] and \[b\] are the length of the base and the perpendicular sides respectively.
Complete step-by-step answer:
We will draw a $\vartriangle ABC$ and then draw a perpendicular from the vertex \[C\] to \[AB\] such that \[CD \bot AB\].
Also, let the length of the side \[AD = x\]
Hence, according to the question,
Since, \[CA = 2AD\]
Therefore, \[CA = 2AD = 2x\]
Also, \[BD = 3AD = 3x\]

Now, in $\vartriangle ADC$ which is right angled at \[\angle D\] (Because \[CD \bot AB\]),
We will apply Pythagoras Theorem, i.e.
\[{h^2} = {a^2} + {b^2}\] , where, \[h\] is the hypotenuse and \[a\] and \[b\] are the length of the base and the perpendicular sides respectively.
Hence, by applying Pythagoras theorem in $\vartriangle ADC$,
\[{\left( {AC} \right)^2} = {\left( {AD} \right)^2} + {\left( {CD} \right)^2}\]
\[ \Rightarrow {\left( {2x} \right)^2} = {\left( x \right)^2} + {\left( {CD} \right)^2}\]
Hence, solving further,
\[ \Rightarrow {\left( {CD} \right)^2} = 4{x^2} - {x^2} = 3{x^2}\]
Taking square root on both sides,
\[ \Rightarrow CD = \sqrt 3 x\]
Hence, the length of \[CD = \sqrt 3 x\]
Also, after taking the square root, we have not considered the negative value because the length of the side of a triangle can never be negative.
Now, similarly, we will apply the Pythagoras Theorem in $\vartriangle CDB$ which is right angled at \[\angle D\] (Because \[CD \bot AB\]),
\[{\left( {BC} \right)^2} = {\left( {BD} \right)^2} + {\left( {CD} \right)^2}\]
\[ \Rightarrow {\left( {BC} \right)^2} = {\left( {3x} \right)^2} + {\left( {\sqrt 3 x} \right)^2}\]
Hence, solving further,
\[ \Rightarrow {\left( {BC} \right)^2} = 9{x^2} + 3{x^2} = 12{x^2}\]
Taking square root on both sides,
\[ \Rightarrow BC = 2\sqrt 3 x\]
Hence, the length of \[BC = 2\sqrt 3 x\]
Again, after taking the square root, we have not considered the negative value because the length of the side of a triangle can never be negative.
Now, finally in order to prove that \[\angle BCA = 90^\circ \],
We will try to prove that $\vartriangle BCA$ is a right angled triangle right angled at \[\angle C\].
Hence, applying Pythagoras Theorem in $\vartriangle BCA$,
\[{\left( {AB} \right)^2} = {\left( {AC} \right)^2} + {\left( {BC} \right)^2}\]
Now, the length of side \[AB = AD + BD = x + 3x = 4x\]
And, it is given that \[AC = 2x\]
Also, we have proved that \[BC = 2\sqrt 3 x\]
\[ \Rightarrow {\left( {4x} \right)^2} = {\left( {2x} \right)^2} + {\left( {2\sqrt 3 x} \right)^2}\]
\[ \Rightarrow 16{x^2} = 4{x^2} + 12{x^2}\]
Hence, solving further,
\[ \Rightarrow 16{x^2} = 16{x^2}\]
Clearly, LHS \[ = \]RHS
Therefore, Pythagoras theorem holds true in this triangle.
Hence, $\vartriangle BCA$ is a right angled triangle right angled at \[\angle C\].
Therefore, it is proved that \[\angle BCA = 90^\circ \]
Hence, proved
Note: An alternate way to solve this question is:
We will use trigonometric identities in a right angled triangle.
As we know, in a right angled triangle \[\cos \theta = \dfrac{B}{H}\], where \[B\]is the base and \[H\] is the hypotenuse.
Therefore, in $\vartriangle ADC$
\[\cos \theta = \dfrac{B}{H} = \dfrac{{AD}}{{AC}} = \dfrac{x}{{2x}} = \dfrac{1}{2}\]
Now, using trigonometric tables, we know that \[\cos 60^\circ = \dfrac{1}{2}\]
\[ \Rightarrow \cos \theta = \cos 60^\circ \]
Therefore, \[\angle CAD = \theta = 60^\circ \]

Now, let us assume that \[\angle BCA \ne 90^\circ \]
Hence, in $\vartriangle BCA$,
\[\cos \theta = \dfrac{B}{H} = \dfrac{{AC}}{{AB}} = \dfrac{{2x}}{{4x}} = \dfrac{1}{2}\]
Now, using trigonometric tables, we know that \[\cos 60^\circ = \dfrac{1}{2}\]
\[ \Rightarrow \cos \theta = \cos 60^\circ \]
Therefore, \[\angle CAD = \theta = 60^\circ \]
But, we have already proved that \[\angle CAD = \theta = 60^\circ \]
Hence, this is a contradictory situation.
Therefore, our assumption is not correct and \[\angle BCA = 90^\circ \]
Hence, proved
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE
