Answer
Verified
395.1k+ views
Hint: Compound Interest: Compound interest is interest on interest. Addition of the interest in the principal amount. Or reinvesting the interest.
As we know that
$ \Rightarrow C.I. = P{\left( {1 + \dfrac{r}{{100}}} \right)^T} - P$
Here
CI=compound interest
P=principal
r=rate of interest
T=time
As we have found time for a given question. so , I will keep the value in the given equation and try to solve step by step as maintained below.
Complete step by step solution:
Given,
Principal, \[P = Rs.800\]
Amount, \[A = Rs.882\]
Rate, \[R = 5\% \]
Time, \[T = ?\]
Rate, R=?
Formula of compound interest,
$ \Rightarrow A = P{\left( {1 + \dfrac{r}{{100}}} \right)^T}$
Put the values in the formula,
\[ \Rightarrow 882 = 800{\left( {1 + \dfrac{5}{{100}}} \right)^T}\]
Simplify
\[ \Rightarrow \dfrac{{882}}{{800}} = {\left( {1 + \dfrac{1}{{20}}} \right)^T}\]
\[ \Rightarrow \dfrac{{441}}{{400}} = {\left( {\dfrac{{20 + 1}}{{100}}} \right)^T}\]
\[ \Rightarrow \dfrac{{441}}{{400}} = {\left( {\dfrac{{21}}{{100}}} \right)^T}\]
\[ \Rightarrow {\left( {\dfrac{{21}}{{20}}} \right)^2} = {\left( {\dfrac{{21}}{{20}}} \right)^T}\]
The Bases of both sides are the same so bases are cancelled out.
\[ \Rightarrow T = 2years\]
So the answer is (B) $2year$ .
So, the correct answer is “Option B”.
Note: Compound interest earned or paid on both the principal and previously earned interest. For annually compound interest means “once in a year”, half yearly means “twice in the year”, quarterly means “four times in the year”. Compound interest is always more than simple interest for a given period of time.
Additional information:
Difference between compound interest and simple interest:
Simple interest is based on the principal amount of a loan or deposit. In contrast, compound interest is based on the principal amount and the interest that accumulates on it in every period. Simple interest is calculated only on the principal amount of a loan or deposit, so it is easier to determine than compound interest.
As we know that
$ \Rightarrow C.I. = P{\left( {1 + \dfrac{r}{{100}}} \right)^T} - P$
Here
CI=compound interest
P=principal
r=rate of interest
T=time
As we have found time for a given question. so , I will keep the value in the given equation and try to solve step by step as maintained below.
Complete step by step solution:
Given,
Principal, \[P = Rs.800\]
Amount, \[A = Rs.882\]
Rate, \[R = 5\% \]
Time, \[T = ?\]
Rate, R=?
Formula of compound interest,
$ \Rightarrow A = P{\left( {1 + \dfrac{r}{{100}}} \right)^T}$
Put the values in the formula,
\[ \Rightarrow 882 = 800{\left( {1 + \dfrac{5}{{100}}} \right)^T}\]
Simplify
\[ \Rightarrow \dfrac{{882}}{{800}} = {\left( {1 + \dfrac{1}{{20}}} \right)^T}\]
\[ \Rightarrow \dfrac{{441}}{{400}} = {\left( {\dfrac{{20 + 1}}{{100}}} \right)^T}\]
\[ \Rightarrow \dfrac{{441}}{{400}} = {\left( {\dfrac{{21}}{{100}}} \right)^T}\]
\[ \Rightarrow {\left( {\dfrac{{21}}{{20}}} \right)^2} = {\left( {\dfrac{{21}}{{20}}} \right)^T}\]
The Bases of both sides are the same so bases are cancelled out.
\[ \Rightarrow T = 2years\]
So the answer is (B) $2year$ .
So, the correct answer is “Option B”.
Note: Compound interest earned or paid on both the principal and previously earned interest. For annually compound interest means “once in a year”, half yearly means “twice in the year”, quarterly means “four times in the year”. Compound interest is always more than simple interest for a given period of time.
Additional information:
Difference between compound interest and simple interest:
Simple interest is based on the principal amount of a loan or deposit. In contrast, compound interest is based on the principal amount and the interest that accumulates on it in every period. Simple interest is calculated only on the principal amount of a loan or deposit, so it is easier to determine than compound interest.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE