
In which of the following equilibrium, ${{K}_{c}}$ and ${{K}_{p}}$ are not equal?
(A) $2{{C}_{(s)}}+{{O}_{2(g)}}\rightleftharpoons 2C{{O}_{(g)}}$
(B) $2N{{O}_{(g)}}\rightleftharpoons {{N}_{2(g)}}+{{O}_{2(g)}}$
(C) $S{{O}_{2(g)}}+N{{O}_{2(g)}}\rightleftharpoons S{{O}_{3(g)}}+N{{O}_{(g)}}$
(D) ${{H}_{2(g)}}+{{I}_{2(g)}}\rightleftharpoons 2H{{I}_{(g)}}$
Answer
574.2k+ views
Hint: Recollect what is ${{K}_{c}}$ and ${{K}_{p}}$. Find out the relationship between ${{K}_{c}}$ and ${{K}_{p}}$. Then accordingly substitute the values from the chemical reaction and find out the answer.
Complete answer:
-${{K}_{c}}$ and ${{K}_{p}}$ are both equilibrium constants. ${{K}_{c}}$ is measured in terms of molar concentration of reactants and products whereas, ${{K}_{p}}$ is measured in terms of partial pressures of reactants and products.
We know that, \[~{{\text{K}}_{\text{c}}}\text{=}\dfrac{\left[ \text{products} \right]}{\left[ \text{reactants} \right]}\] and also, ${{\text{K}}_{\text{p}}}\text{=}\dfrac{\text{partial pressure of products}}{\text{partial pressure of reactants}}$
From ideal gas equation we have,
PV=nRT
\[P=\dfrac{n}{V}RT\]
Concentration, \[C=\dfrac{n}{V}\]. Substituting this in above equation, we get,
\[P=CRT\]
So, when we equate ${{K}_{c}}$ and ${{K}_{p}}$, we obtain the relation,
\[{{K}_{p}}={{K}_{c}}\times {{(RT)}^{\Delta n}}\] where $\Delta n$ is the change in number of moles of gaseous products to number of moles of gaseous reactants. $\Delta n$ should be zero in order to get ${{K}_{p}}={{K}_{c}}$.
Now, let’s calculate $\Delta n$ for each reaction.
For option (A),
\[2{{C}_{(s)}}+{{O}_{2(g)}}\rightleftharpoons 2C{{O}_{(g)}}\]
$\Delta n=2-3=-1$
So, ${{K}_{p}}\ne {{K}_{c}}$
For option (B),
\[2N{{O}_{(g)}}\rightleftharpoons {{N}_{2(g)}}+{{O}_{2(g)}}\]
$\Delta n=2-2=0$
So, ${{K}_{p}}={{K}_{c}}$
For option (C),
\[S{{O}_{2(g)}}+N{{O}_{2(g)}}\rightleftharpoons S{{O}_{3(g)}}+N{{O}_{(g)}}\]
$\Delta n=2-2=0$
So, ${{K}_{p}}={{K}_{c}}$
For option (D),
${{H}_{2(g)}}+{{I}_{2(g)}}\rightleftharpoons 2H{{I}_{(g)}}$
$\Delta n=2-2=0$
So, ${{K}_{p}}={{K}_{c}}$
So, we can conclude that, in reaction,
(A) \[2{{C}_{(s)}}+{{O}_{2(g)}}\rightleftharpoons 2C{{O}_{(g)}}\]
${{K}_{c}}$ and ${{K}_{p}}$ are not equal because $\Delta n\ne 0$
Therefore, option (A) is the correct answer.
Note:
Remember the equilibrium concept thoroughly. Make a note of what is partial pressure of a gas and how to derive the relation between both the equilibrium constants. Also, see in which type of problems ${{K}_{c}}$ is used and where ${{K}_{p}}$ is used.
Complete answer:
-${{K}_{c}}$ and ${{K}_{p}}$ are both equilibrium constants. ${{K}_{c}}$ is measured in terms of molar concentration of reactants and products whereas, ${{K}_{p}}$ is measured in terms of partial pressures of reactants and products.
We know that, \[~{{\text{K}}_{\text{c}}}\text{=}\dfrac{\left[ \text{products} \right]}{\left[ \text{reactants} \right]}\] and also, ${{\text{K}}_{\text{p}}}\text{=}\dfrac{\text{partial pressure of products}}{\text{partial pressure of reactants}}$
From ideal gas equation we have,
PV=nRT
\[P=\dfrac{n}{V}RT\]
Concentration, \[C=\dfrac{n}{V}\]. Substituting this in above equation, we get,
\[P=CRT\]
So, when we equate ${{K}_{c}}$ and ${{K}_{p}}$, we obtain the relation,
\[{{K}_{p}}={{K}_{c}}\times {{(RT)}^{\Delta n}}\] where $\Delta n$ is the change in number of moles of gaseous products to number of moles of gaseous reactants. $\Delta n$ should be zero in order to get ${{K}_{p}}={{K}_{c}}$.
Now, let’s calculate $\Delta n$ for each reaction.
For option (A),
\[2{{C}_{(s)}}+{{O}_{2(g)}}\rightleftharpoons 2C{{O}_{(g)}}\]
$\Delta n=2-3=-1$
So, ${{K}_{p}}\ne {{K}_{c}}$
For option (B),
\[2N{{O}_{(g)}}\rightleftharpoons {{N}_{2(g)}}+{{O}_{2(g)}}\]
$\Delta n=2-2=0$
So, ${{K}_{p}}={{K}_{c}}$
For option (C),
\[S{{O}_{2(g)}}+N{{O}_{2(g)}}\rightleftharpoons S{{O}_{3(g)}}+N{{O}_{(g)}}\]
$\Delta n=2-2=0$
So, ${{K}_{p}}={{K}_{c}}$
For option (D),
${{H}_{2(g)}}+{{I}_{2(g)}}\rightleftharpoons 2H{{I}_{(g)}}$
$\Delta n=2-2=0$
So, ${{K}_{p}}={{K}_{c}}$
So, we can conclude that, in reaction,
(A) \[2{{C}_{(s)}}+{{O}_{2(g)}}\rightleftharpoons 2C{{O}_{(g)}}\]
${{K}_{c}}$ and ${{K}_{p}}$ are not equal because $\Delta n\ne 0$
Therefore, option (A) is the correct answer.
Note:
Remember the equilibrium concept thoroughly. Make a note of what is partial pressure of a gas and how to derive the relation between both the equilibrium constants. Also, see in which type of problems ${{K}_{c}}$ is used and where ${{K}_{p}}$ is used.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

