
In which of the following forms the energy is stored in the capacitor?
A) Charge
B) Potential
C) Capacitance
D) Electric field
Answer
216.6k+ views
Hint:
Capacitor: It is two terminal devices used to store electrical energy in an electric field. The area of the capacitor plates increases then the capacitance of the capacitor also increases and vice-versa.
The net charge on the capacitor as a whole is calculated as zero.
When a capacitor has a charge \[q\], this means that the positively charged conductor has a charge \[ + q\] and a negatively charged conductor has a charge \[ - q\].
The positively charged conductor has a higher potential than the negatively charged conductor.
Complete step by step solution:
The energy in the capacitor is stored in the form of an electrostatic field in the dielectric medium, when discharging a capacitor, the electrostatic field in the dielectric medium collapses and the energy stored in the capacitor gets released.
When a capacitor is being charged, some energy is lost by the source to move the charge from one plate to another plate.
The force required to move the charges from one plate to another gradually increases as the capacitor gets charged over time, to overcome by the energy lost by the source, after a certain point the source can no longer stand the force opposing the flow of charge through the plates and the capacitor is said to be fully charged or saturated.
Energy stored in a capacitor is in the form of electrical potential energy, and it is thus related to the charge Q and voltage V on the capacitor.
Hence the correct option is \[\left( {\text{B}} \right)\].
Note:A Capacitor resists the sudden change in voltage
A non-conducting region is present between these two plates of the capacitor which is called a dielectric.
This dielectric can be a vacuum, air, mica, paper, ceramic, aluminum, or any material. The name of the capacitor is given by the dielectric used between the plates.
Capacitor: It is two terminal devices used to store electrical energy in an electric field. The area of the capacitor plates increases then the capacitance of the capacitor also increases and vice-versa.
The net charge on the capacitor as a whole is calculated as zero.
When a capacitor has a charge \[q\], this means that the positively charged conductor has a charge \[ + q\] and a negatively charged conductor has a charge \[ - q\].
The positively charged conductor has a higher potential than the negatively charged conductor.
Complete step by step solution:
The energy in the capacitor is stored in the form of an electrostatic field in the dielectric medium, when discharging a capacitor, the electrostatic field in the dielectric medium collapses and the energy stored in the capacitor gets released.
When a capacitor is being charged, some energy is lost by the source to move the charge from one plate to another plate.
The force required to move the charges from one plate to another gradually increases as the capacitor gets charged over time, to overcome by the energy lost by the source, after a certain point the source can no longer stand the force opposing the flow of charge through the plates and the capacitor is said to be fully charged or saturated.
Energy stored in a capacitor is in the form of electrical potential energy, and it is thus related to the charge Q and voltage V on the capacitor.
Hence the correct option is \[\left( {\text{B}} \right)\].
Note:A Capacitor resists the sudden change in voltage
A non-conducting region is present between these two plates of the capacitor which is called a dielectric.
This dielectric can be a vacuum, air, mica, paper, ceramic, aluminum, or any material. The name of the capacitor is given by the dielectric used between the plates.
Recently Updated Pages
Wheatstone Bridge Explained: Working, Formula & Uses

Young’s Double Slit Experiment Derivation Explained

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

Electricity and Magnetism Explained: Key Concepts & Applications

Chemical Properties of Hydrogen - Important Concepts for JEE Exam Preparation

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Atomic Structure for Beginners

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

