In which of the following molecules all atoms are not coplanar?
- A.
B.
C.
D.
- A.
Answer
Verified
412k+ views
Hint- In order to deal with this question we will use the basic concept of organic chemistry which states that when a carbon atom is $s{p^2}$ or $sp$ hybridized, all the atoms attached to it are in a plane. In this question we will proceed further by understanding when carbon is said to be $sp/s{p^2}/s{p^3}$.
Complete answer:
$sp$ : The third possible arrangement for carbon is sp hybridization which occurs when carbon is bound to two other atoms (two double bonds or one single + one triple bond).
$s{p^2}$ : carbon is said to be $s{p^2}$ hybridized when it is DOUBLY BONDED with any 1 atom and SINGLY BONDED with any other 2 atoms.
$s{p^3}$ : The term “ $s{p^3}$ hybridization” refers to the mixing character of one 2s-orbitals and three 2p-orbitals to create four hybrid orbitals with similar characteristics. In order for an atom to be $s{p^3}$ hybridized, it must have an s orbital and three p orbitals
We know that when a carbon atom is $s{p^2}$ or $sp$ hybridized, all the atoms attached to it are in a plane.
All the carbon atoms in compounds A, C and D are $s{p^2}$ hybridized. Hence, in these molecules, all the atoms are coplanar.
In option B, one carbon atom is $s{p^3}$ hybridized. It has tetrahedral geometry. Hence, in this molecule, all atoms are not coplanar.
So, the correct answer is option B.
Note- Coplanar means atoms or groups of atoms that lie on the same plane. Like biphenyl, it has both benzene rings on the same plane. When all atoms of a compound are in the same plane are called coplanar compounds. Co planarity in organic compounds is seen in unsaturated molecules.
Complete answer:
$sp$ : The third possible arrangement for carbon is sp hybridization which occurs when carbon is bound to two other atoms (two double bonds or one single + one triple bond).
$s{p^2}$ : carbon is said to be $s{p^2}$ hybridized when it is DOUBLY BONDED with any 1 atom and SINGLY BONDED with any other 2 atoms.
$s{p^3}$ : The term “ $s{p^3}$ hybridization” refers to the mixing character of one 2s-orbitals and three 2p-orbitals to create four hybrid orbitals with similar characteristics. In order for an atom to be $s{p^3}$ hybridized, it must have an s orbital and three p orbitals
We know that when a carbon atom is $s{p^2}$ or $sp$ hybridized, all the atoms attached to it are in a plane.
All the carbon atoms in compounds A, C and D are $s{p^2}$ hybridized. Hence, in these molecules, all the atoms are coplanar.
In option B, one carbon atom is $s{p^3}$ hybridized. It has tetrahedral geometry. Hence, in this molecule, all atoms are not coplanar.
So, the correct answer is option B.
Note- Coplanar means atoms or groups of atoms that lie on the same plane. Like biphenyl, it has both benzene rings on the same plane. When all atoms of a compound are in the same plane are called coplanar compounds. Co planarity in organic compounds is seen in unsaturated molecules.
Recently Updated Pages
Class 11 Question and Answer - Your Ultimate Solutions Guide
Master Class 11 Business Studies: Engaging Questions & Answers for Success
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Master Class 11 Social Science: Engaging Questions & Answers for Success
Master Class 11 Physics: Engaging Questions & Answers for Success
Master Class 11 Maths: Engaging Questions & Answers for Success
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE