Answer
Verified
459.3k+ views
Hint: Here, we need to find 5 rational numbers between \[4.6\] and \[8.4\]. A rational number is a number which can be written in the form \[\dfrac{p}{q}\], where the denominator \[q \ne 0\]. We will use the formula of rational numbers between two numbers to find the required number.
Formula Used: The \[n\] rational numbers between two numbers \[x\] and \[y\] are given as \[x + d\],
\[x + 2d\], \[x + 3d\], …, \[x + \left( {n - 1} \right)d\],
\[x + nd\] where \[y > x\] and \[d = \dfrac{{y - x}}{{n + 1}}\].
Complete step-by-step answer:
We have to find 5 rational numbers in between \[4.6\] and \[8.4\].
Here, \[8.4 > 4.6\].
Therefore, let \[x\] be \[4.6\] and \[y\] be \[8.4\].
Since we have to find 5 rational numbers in between
\[4.6\] and \[8.4\], let \[n\] be 5.
Substituting \[x = 4.6\], \[y = 8.4\], and \[n = 5\] in the formula \[d = \dfrac{{y - x}}{{n + 1}}\], we get
\[ \Rightarrow d = \dfrac{{8.4 - 4.6}}{{5 + 1}}\]
Adding and subtracting the terms in the expression, we get
\[ \Rightarrow d = \dfrac{{3.8}}{6} = \dfrac{{38}}{{60}}\]
Simplifying the expression, we get
\[ \Rightarrow d = \dfrac{{19}}{{30}}\]
Now, the 5 rational numbers between two numbers \[x\] and \[y\] are given as \[x + d\], \[x + 2d\], \[x + 3d\], \[x + 4d\],
\[x + 5d\] where
\[y > x\] and \[d = \dfrac{{y - x}}{{n + 1}}\].
We will substitute the value of \[x\] and \[d\] to find the rational numbers one by one.
Substituting \[x = 4.6 = \dfrac{{46}}{{10}}\] and
\[d = \dfrac{{19}}{{30}}\] in the expression \[x + d\], we get
First rational number between
\[4.6\] and \[8.4\] \[ = \dfrac{{46}}{{10}} + \dfrac{{19}}{{30}}\]
Taking the L.C.M. and simplifying the expression, we get
First rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{138 + 19}}{{30}} = \dfrac{{157}}{{30}}\]
Substituting \[x = \dfrac{{46}}{{10}}\] and \[d = \dfrac{{19}}{{30}}\] in the expression \[x + 2d\], we get
Second rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{46}}{{10}} + 2 \times \dfrac{{19}}{{30}} = \dfrac{{46}}{{10}} + \dfrac{{38}}{{30}}\]
Taking the L.C.M. and simplifying the expression, we get
Second rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{138 + 38}}{{30}} = \dfrac{{176}}{{30}} = \dfrac{{88}}{{15}}\]
Substituting \[x = \dfrac{{46}}{{10}}\] and \[d = \dfrac{{19}}{{30}}\] in the expression \[x + 3d\], we get
Third rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{46}}{{10}} + 3 \times \dfrac{{19}}{{30}} = \dfrac{{46}}{{10}} + \dfrac{{57}}{{30}}\]
Taking the L.C.M. and simplifying the expression, we get
Third rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{138 + 57}}{{30}} = \dfrac{{195}}{{30}} = \dfrac{{13}}{2}\]
Substituting \[x = \dfrac{{46}}{{10}}\] and \[d = \dfrac{{19}}{{30}}\] in the expression \[x + 4d\], we get
Fourth rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{46}}{{10}} + 4 \times \dfrac{{19}}{{30}} = \dfrac{{46}}{{10}} + \dfrac{{76}}{{30}}\]
Taking the L.C.M. and simplifying the expression, we get
Fourth rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{138 + 76}}{{30}} = \dfrac{{214}}{{30}} = \dfrac{{107}}{{15}}\]
Substituting \[x = \dfrac{{46}}{{10}}\] and \[d = \dfrac{{19}}{{30}}\] in the expression \[x + 5d\], we get
Fifth rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{46}}{{10}} + 5 \times \dfrac{{19}}{{30}} = \dfrac{{46}}{{10}} + \dfrac{{95}}{{30}}\]
Taking the L.C.M. and simplifying the expression, we get
Fifth rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{138 + 95}}{{30}} = \dfrac{{233}}{{30}}\]
Therefore, we get the 5 rational numbers between \[4.6\] and \[8.4\] as \[\dfrac{{157}}{{30}}\], \[\dfrac{{88}}{{15}}\], \[\dfrac{{13}}{2}\], \[\dfrac{{107}}{{15}}\], and \[\dfrac{{233}}{{30}}\].
Note: Here we have found out 5 rational numbers. We can say that the number we found is a rational number because the denominator is not equal to zero. If the denominator of a fraction is zero then they are termed as infinite numbers. We could have found the answer using a number line and placing the given numbers on the number line. And then observe which numbers come in between \[4.6\] and \[8.4\].
Formula Used: The \[n\] rational numbers between two numbers \[x\] and \[y\] are given as \[x + d\],
\[x + 2d\], \[x + 3d\], …, \[x + \left( {n - 1} \right)d\],
\[x + nd\] where \[y > x\] and \[d = \dfrac{{y - x}}{{n + 1}}\].
Complete step-by-step answer:
We have to find 5 rational numbers in between \[4.6\] and \[8.4\].
Here, \[8.4 > 4.6\].
Therefore, let \[x\] be \[4.6\] and \[y\] be \[8.4\].
Since we have to find 5 rational numbers in between
\[4.6\] and \[8.4\], let \[n\] be 5.
Substituting \[x = 4.6\], \[y = 8.4\], and \[n = 5\] in the formula \[d = \dfrac{{y - x}}{{n + 1}}\], we get
\[ \Rightarrow d = \dfrac{{8.4 - 4.6}}{{5 + 1}}\]
Adding and subtracting the terms in the expression, we get
\[ \Rightarrow d = \dfrac{{3.8}}{6} = \dfrac{{38}}{{60}}\]
Simplifying the expression, we get
\[ \Rightarrow d = \dfrac{{19}}{{30}}\]
Now, the 5 rational numbers between two numbers \[x\] and \[y\] are given as \[x + d\], \[x + 2d\], \[x + 3d\], \[x + 4d\],
\[x + 5d\] where
\[y > x\] and \[d = \dfrac{{y - x}}{{n + 1}}\].
We will substitute the value of \[x\] and \[d\] to find the rational numbers one by one.
Substituting \[x = 4.6 = \dfrac{{46}}{{10}}\] and
\[d = \dfrac{{19}}{{30}}\] in the expression \[x + d\], we get
First rational number between
\[4.6\] and \[8.4\] \[ = \dfrac{{46}}{{10}} + \dfrac{{19}}{{30}}\]
Taking the L.C.M. and simplifying the expression, we get
First rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{138 + 19}}{{30}} = \dfrac{{157}}{{30}}\]
Substituting \[x = \dfrac{{46}}{{10}}\] and \[d = \dfrac{{19}}{{30}}\] in the expression \[x + 2d\], we get
Second rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{46}}{{10}} + 2 \times \dfrac{{19}}{{30}} = \dfrac{{46}}{{10}} + \dfrac{{38}}{{30}}\]
Taking the L.C.M. and simplifying the expression, we get
Second rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{138 + 38}}{{30}} = \dfrac{{176}}{{30}} = \dfrac{{88}}{{15}}\]
Substituting \[x = \dfrac{{46}}{{10}}\] and \[d = \dfrac{{19}}{{30}}\] in the expression \[x + 3d\], we get
Third rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{46}}{{10}} + 3 \times \dfrac{{19}}{{30}} = \dfrac{{46}}{{10}} + \dfrac{{57}}{{30}}\]
Taking the L.C.M. and simplifying the expression, we get
Third rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{138 + 57}}{{30}} = \dfrac{{195}}{{30}} = \dfrac{{13}}{2}\]
Substituting \[x = \dfrac{{46}}{{10}}\] and \[d = \dfrac{{19}}{{30}}\] in the expression \[x + 4d\], we get
Fourth rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{46}}{{10}} + 4 \times \dfrac{{19}}{{30}} = \dfrac{{46}}{{10}} + \dfrac{{76}}{{30}}\]
Taking the L.C.M. and simplifying the expression, we get
Fourth rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{138 + 76}}{{30}} = \dfrac{{214}}{{30}} = \dfrac{{107}}{{15}}\]
Substituting \[x = \dfrac{{46}}{{10}}\] and \[d = \dfrac{{19}}{{30}}\] in the expression \[x + 5d\], we get
Fifth rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{46}}{{10}} + 5 \times \dfrac{{19}}{{30}} = \dfrac{{46}}{{10}} + \dfrac{{95}}{{30}}\]
Taking the L.C.M. and simplifying the expression, we get
Fifth rational number between \[4.6\] and \[8.4\] \[ = \dfrac{{138 + 95}}{{30}} = \dfrac{{233}}{{30}}\]
Therefore, we get the 5 rational numbers between \[4.6\] and \[8.4\] as \[\dfrac{{157}}{{30}}\], \[\dfrac{{88}}{{15}}\], \[\dfrac{{13}}{2}\], \[\dfrac{{107}}{{15}}\], and \[\dfrac{{233}}{{30}}\].
Note: Here we have found out 5 rational numbers. We can say that the number we found is a rational number because the denominator is not equal to zero. If the denominator of a fraction is zero then they are termed as infinite numbers. We could have found the answer using a number line and placing the given numbers on the number line. And then observe which numbers come in between \[4.6\] and \[8.4\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers