Answer
Verified
469.5k+ views
Hint: Before attempting this question, one should have prior knowledge about the quadratic equation as in the above equation is a quadratic equation of degree 2 so this equation can easily be solved by the quadratic formula $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ and also remember to let ${p^2}$ as the perfect square of the given equation and use the algebraic identities ${\left( {a \pm b} \right)^2} = {a^2} + {b^2} \pm 2ab$.
Complete step-by-step solution:
The given quadratic equation is: ${x^2} + ax + a + 1 = 0$
So, by applying quadratic formula we get
$x = \dfrac{{ - a \pm \sqrt {{a^2} - 4(a + 1)} }}{{2a}}$
= $x = \dfrac{{ - a \pm \sqrt {{a^2} - 4a - 4} }}{{2a}}$
So, to get the integral values of a the expression ${a^2} - 4a - 4$ need to be a perfect square
So ${a^2} - 4a - 4 = {p^2}$
Here ${p^2}$ is a perfect square
\[
{a^2} - 4a - 4 - {p^2} = 0 \\
{a^2} - 4a = 4 + {p^2} \\
{a^2} - 4a + 4 = 4 + 4 + {p^2} \\
\]
Here 4 is added to both left- and right-hand sides
As we know that ${\left( {a \pm b} \right)^2} = {a^2} + {b^2} \pm 2ab$
Therefore ${(a - 2)^2} = 8 + {p^2}$
Let the value of p=1
$
{(a - 2)^2} = 8 + 1 \\
{(a - 2)^2} = 9 \\
a - 2 = \pm 3 \\
$
Let a – 2 = 3
This gives a = 5
And a – 2 = -3
This gives a = - 1
So, the options A and D are correct
We can further put the ${p^2} = 4,9,16..$ and other perfect squares but the answer will be irrational which is irreverent for us.
Note: In the above question to approach the solution we used the quadratic formula i.e. $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where a, b, and c is the real number of an quadratic equation than to get the integral roots of a the determinant ($\sqrt {{b^2} - 4ac} $) must to be a perfect square so we put $\sqrt {{b^2} - 4ac} = {p^2}$ where ${p^2}$ is a perfect square.
Complete step-by-step solution:
The given quadratic equation is: ${x^2} + ax + a + 1 = 0$
So, by applying quadratic formula we get
$x = \dfrac{{ - a \pm \sqrt {{a^2} - 4(a + 1)} }}{{2a}}$
= $x = \dfrac{{ - a \pm \sqrt {{a^2} - 4a - 4} }}{{2a}}$
So, to get the integral values of a the expression ${a^2} - 4a - 4$ need to be a perfect square
So ${a^2} - 4a - 4 = {p^2}$
Here ${p^2}$ is a perfect square
\[
{a^2} - 4a - 4 - {p^2} = 0 \\
{a^2} - 4a = 4 + {p^2} \\
{a^2} - 4a + 4 = 4 + 4 + {p^2} \\
\]
Here 4 is added to both left- and right-hand sides
As we know that ${\left( {a \pm b} \right)^2} = {a^2} + {b^2} \pm 2ab$
Therefore ${(a - 2)^2} = 8 + {p^2}$
Let the value of p=1
$
{(a - 2)^2} = 8 + 1 \\
{(a - 2)^2} = 9 \\
a - 2 = \pm 3 \\
$
Let a – 2 = 3
This gives a = 5
And a – 2 = -3
This gives a = - 1
So, the options A and D are correct
We can further put the ${p^2} = 4,9,16..$ and other perfect squares but the answer will be irrational which is irreverent for us.
Note: In the above question to approach the solution we used the quadratic formula i.e. $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ where a, b, and c is the real number of an quadratic equation than to get the integral roots of a the determinant ($\sqrt {{b^2} - 4ac} $) must to be a perfect square so we put $\sqrt {{b^2} - 4ac} = {p^2}$ where ${p^2}$ is a perfect square.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers