Answer
Verified
429.3k+ views
Hint: The integration is the process of finding the antiderivative of a function. It is a similar way to add the slices to make it whole.
For example:
The derivative of $x$ is $1$ and the integration of $1$ i.e. $\int{1}$ is $x$.
Complete step by step solution:Given that $\dfrac{{{\left( lnx \right)}^{2}}}{{{x}^{2}}}$ so we have to integrate this term we can write it as $I=\int{\dfrac{{{\left( lnx \right)}^{2}}}{{{x}^{2}}}\,dx}$
The formula used in this solution is:
$\int{udv}=u\int{dv-\int{\left[ \dfrac{du}{dx}\int{dv} \right]}}$
It is called integration by parts. This formula is used when two functions are in the product and we have to integrate it. The function which is in the product needs to be of the same variable either it will be considered as constant.
For example:
$\int{\sin x\centerdot {{x}^{2}}dx}$
Here $\sin x$ is a function of $x$ and also ${{x}^{2}}$ is a function of $x$.
So, we have,
$I=\int{\dfrac{{{\left( lnx \right)}^{2}}}{{{x}^{2}}}\,dx}\,.......(A)$
Let $z=\ln x$ then differentiating it w.r.t $x$, we get
$\dfrac{dz}{dx}=\dfrac{1}{x}$
$dz=\dfrac{dx}{x}\,.........(1)$
And if \[z=lnx\] then \[{{e}^{z}}=x\,........(2)\]
Putting values of \[(1)\] and \[(2)\] in equation \[(A)\]
\[I=\int{{{z}^{2}}}\centerdot {{e}^{-z}}dz\]
Here, \[{{z}^{2}}\] and \[{{e}^{-z}}\] are in product so we will apply integration by parts considering,
\[u={{z}^{2}}\] so \[du=2\centerdot zdz\]
\[\dfrac{du}{dz}=2z\]
\[dv={{e}^{-z}}dz\] so integration it we get \[v=-{{e}^{-z}}\]
\[I=\int{u\centerdot dv}=u\int{dv-\int{\left[ \dfrac{du}{dz}\centerdot \int{dv} \right]}}\]
\[=u\centerdot v-\int{\dfrac{du}{dz}\centerdot v}\]
\[=-{{z}^{2}}-{{e}^{-z}}-2\int{z\left( -{{e}^{-z}} \right)}dz\]
\[I=-{{z}^{2}}{{e}^{-z}}+2\int{z{{e}^{-z}}}dz\]
Again applying integration by parts on
\[\int{z{{e}^{-z}}}dz\]
\[u=z\] so \[v=-{{e}^{-z}}\]
\[\therefore \,I=z{{e}^{-z}}+2\left( -z{{e}^{-z}}-\int{-{{e}^{-z}}dz} \right)\]
\[=z{{e}^{-z}}-2z{{e}^{-z}}+2\int{{{e}^{-z}}dz}\]
\[I=z{{e}^{-z}}-2z{{e}^{-z}}-z{{e}^{-z}}+C\]
The question is given in the terms of \[x\]. So, we need to find the answer in terms of \[x\].
If we remember that \[z=ln(x)\] we’ll have
\[I=-{{e}^{ln(x)}}\left( {{\left( lnx \right)}^{2}}+2lnx+2 \right)+C\]
\[I=C-\dfrac{{{\left( lnx \right)}^{2}}+2lnx+2}{x}\]
Additional Information:
In the solution it is not necessary that you should only consider \[z\] for solving by parts or \[u,v\] and you can take any variable you wish. Keep in mind the formula of integration by parts and you are good to go.
Note:
In the terms of \[{{\left( lnx \right)}^{2}}\] you might get confused by and may be you end up solving it wrong by considering it as \[ln{{x}^{2}}\] this term has square power only on \[x\] but in question \[lnx\] this whole term is under square power.
The term \[ln\left( x \right)=z\] when changes to \[{{e}^{z}}=x\] this is because there is a property of logarithm that \[\log _{b}^{a}=x\] we can write it as \[{{b}^{x}}=a\].
For example:
The derivative of $x$ is $1$ and the integration of $1$ i.e. $\int{1}$ is $x$.
Complete step by step solution:Given that $\dfrac{{{\left( lnx \right)}^{2}}}{{{x}^{2}}}$ so we have to integrate this term we can write it as $I=\int{\dfrac{{{\left( lnx \right)}^{2}}}{{{x}^{2}}}\,dx}$
The formula used in this solution is:
$\int{udv}=u\int{dv-\int{\left[ \dfrac{du}{dx}\int{dv} \right]}}$
It is called integration by parts. This formula is used when two functions are in the product and we have to integrate it. The function which is in the product needs to be of the same variable either it will be considered as constant.
For example:
$\int{\sin x\centerdot {{x}^{2}}dx}$
Here $\sin x$ is a function of $x$ and also ${{x}^{2}}$ is a function of $x$.
So, we have,
$I=\int{\dfrac{{{\left( lnx \right)}^{2}}}{{{x}^{2}}}\,dx}\,.......(A)$
Let $z=\ln x$ then differentiating it w.r.t $x$, we get
$\dfrac{dz}{dx}=\dfrac{1}{x}$
$dz=\dfrac{dx}{x}\,.........(1)$
And if \[z=lnx\] then \[{{e}^{z}}=x\,........(2)\]
Putting values of \[(1)\] and \[(2)\] in equation \[(A)\]
\[I=\int{{{z}^{2}}}\centerdot {{e}^{-z}}dz\]
Here, \[{{z}^{2}}\] and \[{{e}^{-z}}\] are in product so we will apply integration by parts considering,
\[u={{z}^{2}}\] so \[du=2\centerdot zdz\]
\[\dfrac{du}{dz}=2z\]
\[dv={{e}^{-z}}dz\] so integration it we get \[v=-{{e}^{-z}}\]
\[I=\int{u\centerdot dv}=u\int{dv-\int{\left[ \dfrac{du}{dz}\centerdot \int{dv} \right]}}\]
\[=u\centerdot v-\int{\dfrac{du}{dz}\centerdot v}\]
\[=-{{z}^{2}}-{{e}^{-z}}-2\int{z\left( -{{e}^{-z}} \right)}dz\]
\[I=-{{z}^{2}}{{e}^{-z}}+2\int{z{{e}^{-z}}}dz\]
Again applying integration by parts on
\[\int{z{{e}^{-z}}}dz\]
\[u=z\] so \[v=-{{e}^{-z}}\]
\[\therefore \,I=z{{e}^{-z}}+2\left( -z{{e}^{-z}}-\int{-{{e}^{-z}}dz} \right)\]
\[=z{{e}^{-z}}-2z{{e}^{-z}}+2\int{{{e}^{-z}}dz}\]
\[I=z{{e}^{-z}}-2z{{e}^{-z}}-z{{e}^{-z}}+C\]
The question is given in the terms of \[x\]. So, we need to find the answer in terms of \[x\].
If we remember that \[z=ln(x)\] we’ll have
\[I=-{{e}^{ln(x)}}\left( {{\left( lnx \right)}^{2}}+2lnx+2 \right)+C\]
\[I=C-\dfrac{{{\left( lnx \right)}^{2}}+2lnx+2}{x}\]
Additional Information:
In the solution it is not necessary that you should only consider \[z\] for solving by parts or \[u,v\] and you can take any variable you wish. Keep in mind the formula of integration by parts and you are good to go.
Note:
In the terms of \[{{\left( lnx \right)}^{2}}\] you might get confused by and may be you end up solving it wrong by considering it as \[ln{{x}^{2}}\] this term has square power only on \[x\] but in question \[lnx\] this whole term is under square power.
The term \[ln\left( x \right)=z\] when changes to \[{{e}^{z}}=x\] this is because there is a property of logarithm that \[\log _{b}^{a}=x\] we can write it as \[{{b}^{x}}=a\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Give 10 examples for herbs , shrubs , climbers , creepers