Answer
Verified
429.9k+ views
Hint: Take $\text{arcsec} x$ as the first function and ‘x’ as the second function for the integration by parts rule. Put the the integration of \[\int{x}dx\] as \[\dfrac{{{x}^{2}}}{2}\] and the derivative of \[\dfrac{d}{dx}\left( \text{arcsec} x \right)\] as \[\dfrac{1}{x\sqrt{{{x}^{2}}-1}}\]. Solve the integration \[\int{\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)}dx\] separately by taking $u={{x}^{2}}-1$ and put the value of the integration later to obtain the required solution.
Complete step-by-step solution:
Integration by parts: If we have two functions let say ‘u’ and ‘v’, then the integration $\int{u.v}$ can be carried out using integration by parts as $\int{u.v}=u\int{vdv-\int{\left( \dfrac{du}{dx}\int{v}dv \right)}}dv$.
Now, considering our equation, $\int{x\text{arcsec} x}$
Here $u=\text{arcsec} x$ and $v=x$
Applying by parts, we get
\[\begin{align}
& \int{\text{arcsec} x}\cdot x \\
& \Rightarrow \text{arcsec} x\int{x}dx-\int{\left( \dfrac{d}{dx}\left( \text{arcsec} x \right)\int{x}dx \right)dx} \\
\end{align}\]
As we know, the integration of \[\int{x}dx=\dfrac{{{x}^{2}}}{2}\] and the derivative of \[\dfrac{d}{dx}\left( \text{arcsec} x \right)=\dfrac{1}{x\sqrt{{{x}^{2}}-1}}\]
So substituting these values, we get
\[\begin{align}
& \Rightarrow \text{arcsec} x\left( \dfrac{{{x}^{2}}}{2} \right)-\int{\left( \dfrac{1}{x\sqrt{{{x}^{2}}-1}} \right)\left( \dfrac{{{x}^{2}}}{2} \right)}dx \\
& \Rightarrow \text{arcsec} x\left( \dfrac{{{x}^{2}}}{2} \right)-\dfrac{1}{2}\int{\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)}dx \\
\end{align}\]
For solving the integration \[\int{\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)}dx\]
Let $u={{x}^{2}}-1$
$\begin{align}
& \Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( {{x}^{2}}-1 \right) \\
& \Rightarrow du=2xdx \\
& \Rightarrow xdx=\dfrac{1}{2}du \\
\end{align}$
Replacing the value of ${{x}^{2}}-1$ as ‘u’ and $xdx$ as $\dfrac{1}{2}du$in the integration \[\int{\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)}dx\], we get
\[\begin{align}
& \Rightarrow \int{\dfrac{\dfrac{1}{2}du}{\sqrt{u}}} \\
& \Rightarrow \dfrac{1}{2}\int{{{u}^{-\dfrac{1}{2}}}}du \\
& \Rightarrow \dfrac{1}{2}\dfrac{{{u}^{-\dfrac{1}{2}+1}}}{^{-\dfrac{1}{2}+1}} \\
& \Rightarrow \dfrac{1}{2}\dfrac{{{u}^{\dfrac{1}{2}}}}{\dfrac{1}{2}} \\
& \Rightarrow \dfrac{1}{2}\times \dfrac{2}{1}{{u}^{\dfrac{1}{2}}} \\
& \Rightarrow \sqrt{u} \\
\end{align}\]
Substituting the value of ‘u’, we get
\[\int{\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)}dx=\sqrt{{{x}^{2}}-1}\]
Coming back to our solution, putting \[\int{\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)}dx=\sqrt{{{x}^{2}}-1}\], we get
\[\Rightarrow \dfrac{1}{2}{{x}^{2}}\text{arcsec} x-\dfrac{1}{2}\sqrt{{{x}^{2}}-1}+c\]
This is the required solution of the given question.
Note: For indefinite integral one constant ‘c’ should be added to the final result. In integration by parts the first function ‘u’ and the second function ‘v’ is decided according to the order of ILATE rule which stands for Inverse Logarithmic Algebraic Trigonometric Exponential. So for our integration $\text{arcsec} x$ is considered as the first function as it is an inverse function. Similarly ‘x’ is considered as the second function as it is an algebraic function.
Complete step-by-step solution:
Integration by parts: If we have two functions let say ‘u’ and ‘v’, then the integration $\int{u.v}$ can be carried out using integration by parts as $\int{u.v}=u\int{vdv-\int{\left( \dfrac{du}{dx}\int{v}dv \right)}}dv$.
Now, considering our equation, $\int{x\text{arcsec} x}$
Here $u=\text{arcsec} x$ and $v=x$
Applying by parts, we get
\[\begin{align}
& \int{\text{arcsec} x}\cdot x \\
& \Rightarrow \text{arcsec} x\int{x}dx-\int{\left( \dfrac{d}{dx}\left( \text{arcsec} x \right)\int{x}dx \right)dx} \\
\end{align}\]
As we know, the integration of \[\int{x}dx=\dfrac{{{x}^{2}}}{2}\] and the derivative of \[\dfrac{d}{dx}\left( \text{arcsec} x \right)=\dfrac{1}{x\sqrt{{{x}^{2}}-1}}\]
So substituting these values, we get
\[\begin{align}
& \Rightarrow \text{arcsec} x\left( \dfrac{{{x}^{2}}}{2} \right)-\int{\left( \dfrac{1}{x\sqrt{{{x}^{2}}-1}} \right)\left( \dfrac{{{x}^{2}}}{2} \right)}dx \\
& \Rightarrow \text{arcsec} x\left( \dfrac{{{x}^{2}}}{2} \right)-\dfrac{1}{2}\int{\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)}dx \\
\end{align}\]
For solving the integration \[\int{\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)}dx\]
Let $u={{x}^{2}}-1$
$\begin{align}
& \Rightarrow \dfrac{du}{dx}=\dfrac{d}{dx}\left( {{x}^{2}}-1 \right) \\
& \Rightarrow du=2xdx \\
& \Rightarrow xdx=\dfrac{1}{2}du \\
\end{align}$
Replacing the value of ${{x}^{2}}-1$ as ‘u’ and $xdx$ as $\dfrac{1}{2}du$in the integration \[\int{\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)}dx\], we get
\[\begin{align}
& \Rightarrow \int{\dfrac{\dfrac{1}{2}du}{\sqrt{u}}} \\
& \Rightarrow \dfrac{1}{2}\int{{{u}^{-\dfrac{1}{2}}}}du \\
& \Rightarrow \dfrac{1}{2}\dfrac{{{u}^{-\dfrac{1}{2}+1}}}{^{-\dfrac{1}{2}+1}} \\
& \Rightarrow \dfrac{1}{2}\dfrac{{{u}^{\dfrac{1}{2}}}}{\dfrac{1}{2}} \\
& \Rightarrow \dfrac{1}{2}\times \dfrac{2}{1}{{u}^{\dfrac{1}{2}}} \\
& \Rightarrow \sqrt{u} \\
\end{align}\]
Substituting the value of ‘u’, we get
\[\int{\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)}dx=\sqrt{{{x}^{2}}-1}\]
Coming back to our solution, putting \[\int{\left( \dfrac{x}{\sqrt{{{x}^{2}}-1}} \right)}dx=\sqrt{{{x}^{2}}-1}\], we get
\[\Rightarrow \dfrac{1}{2}{{x}^{2}}\text{arcsec} x-\dfrac{1}{2}\sqrt{{{x}^{2}}-1}+c\]
This is the required solution of the given question.
Note: For indefinite integral one constant ‘c’ should be added to the final result. In integration by parts the first function ‘u’ and the second function ‘v’ is decided according to the order of ILATE rule which stands for Inverse Logarithmic Algebraic Trigonometric Exponential. So for our integration $\text{arcsec} x$ is considered as the first function as it is an inverse function. Similarly ‘x’ is considered as the second function as it is an algebraic function.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE