
Integrate the function \[{\tan ^2}\left( {2x - 3} \right)\]
Answer
453.3k+ views
Hint:We are asked to integrate the given function. The angle of tangent is given as \[\left( {2x - 3} \right)\] so for simplification assume the term \[\left( {2x - 3} \right)\] as a whole to be a number. Then use the trigonometric identities to simplify the problem and then use the basic formulas for integration to solve the problem.
Complete step by step solution:
Given the function \[{\tan ^2}\left( {2x - 3} \right)\]
Now we integrate the function,
\[I = \int {{{\tan }^2}\left( {2x - 3} \right)dx} \] (i)
Let \[2x - 3 = t\] (ii)
Differentiating equation (ii), we get
\[2dx = dt\]
\[ \Rightarrow dx = \dfrac{1}{2}dt\] (iii)
Using equation (iii) and (ii) in (i) we get,
\[I = \int {\left( {{{\tan }^2}t} \right)\left( {\dfrac{1}{2}dt} \right)} \]
\[ \Rightarrow I = \dfrac{1}{2}\int {{{\tan }^2}tdt} \] (iv)
We have the trigonometric identity for tangent as,
\[1 + {\tan ^2}\theta = {\sec ^2}\theta \]
\[ \Rightarrow {\tan ^2}\theta = {\sec ^2}\theta - 1\]
Therefore using this formula for \[{\tan ^2}t\] we have,
\[{\tan ^2}t = {\sec ^2}t - 1\]
Substituting this value of \[{\tan ^2}t\] in equation (iv) we get,
\[I = \dfrac{1}{2}\int {\left( {{{\sec }^2}t - 1} \right)dt} \]
\[ \Rightarrow I = \dfrac{1}{2}\int {{{\sec }^2}tdt} - \dfrac{1}{2}\int {dt} \] (v)
Integration of \[{\sec ^2}\theta \] is \[\tan \theta \]. Therefore using this in equation (v) we get,
\[I = \dfrac{1}{2}\tan t - \dfrac{1}{2}t + c\] (vi)
\[c\] is constant of integration
Now, substituting equation (ii) in (vi), we get
\[I = \dfrac{1}{2}\tan \left( {2x - 3} \right) - \dfrac{1}{2}\left( {2x - 3} \right) + c\]
\[ \Rightarrow I = \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + \dfrac{3}{2} + c\] (vii)
The term \[\left( {\dfrac{3}{2} + c} \right)\] can be considered as constant so, we can write equation (vii) as,
\[I = \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C\]
where \[C\] is constant.
Therefore, integration of the function \[{\tan ^2}\left( {2x - 3} \right)\] is \[\dfrac{1}{2}\tan \left( {2x - 3}\right) - x + C\].
Note: Integration means adding small components to form a whole function. Here, we were asked to integrate a trigonometric function, to solve such types of questions, you will need to remember the integration of basic trigonometric functions that are sine, cosine and tangent. There are three other trigonometric functions which can be written in terms of the basic functions, these are cosecant which is inverse of sine, secant which is inverse of cosine and cotangent which is inverse of tangent. Also, while solving questions related to trigonometry, you should always remember the basic trigonometric identities.
Complete step by step solution:
Given the function \[{\tan ^2}\left( {2x - 3} \right)\]
Now we integrate the function,
\[I = \int {{{\tan }^2}\left( {2x - 3} \right)dx} \] (i)
Let \[2x - 3 = t\] (ii)
Differentiating equation (ii), we get
\[2dx = dt\]
\[ \Rightarrow dx = \dfrac{1}{2}dt\] (iii)
Using equation (iii) and (ii) in (i) we get,
\[I = \int {\left( {{{\tan }^2}t} \right)\left( {\dfrac{1}{2}dt} \right)} \]
\[ \Rightarrow I = \dfrac{1}{2}\int {{{\tan }^2}tdt} \] (iv)
We have the trigonometric identity for tangent as,
\[1 + {\tan ^2}\theta = {\sec ^2}\theta \]
\[ \Rightarrow {\tan ^2}\theta = {\sec ^2}\theta - 1\]
Therefore using this formula for \[{\tan ^2}t\] we have,
\[{\tan ^2}t = {\sec ^2}t - 1\]
Substituting this value of \[{\tan ^2}t\] in equation (iv) we get,
\[I = \dfrac{1}{2}\int {\left( {{{\sec }^2}t - 1} \right)dt} \]
\[ \Rightarrow I = \dfrac{1}{2}\int {{{\sec }^2}tdt} - \dfrac{1}{2}\int {dt} \] (v)
Integration of \[{\sec ^2}\theta \] is \[\tan \theta \]. Therefore using this in equation (v) we get,
\[I = \dfrac{1}{2}\tan t - \dfrac{1}{2}t + c\] (vi)
\[c\] is constant of integration
Now, substituting equation (ii) in (vi), we get
\[I = \dfrac{1}{2}\tan \left( {2x - 3} \right) - \dfrac{1}{2}\left( {2x - 3} \right) + c\]
\[ \Rightarrow I = \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + \dfrac{3}{2} + c\] (vii)
The term \[\left( {\dfrac{3}{2} + c} \right)\] can be considered as constant so, we can write equation (vii) as,
\[I = \dfrac{1}{2}\tan \left( {2x - 3} \right) - x + C\]
where \[C\] is constant.
Therefore, integration of the function \[{\tan ^2}\left( {2x - 3} \right)\] is \[\dfrac{1}{2}\tan \left( {2x - 3}\right) - x + C\].
Note: Integration means adding small components to form a whole function. Here, we were asked to integrate a trigonometric function, to solve such types of questions, you will need to remember the integration of basic trigonometric functions that are sine, cosine and tangent. There are three other trigonometric functions which can be written in terms of the basic functions, these are cosecant which is inverse of sine, secant which is inverse of cosine and cotangent which is inverse of tangent. Also, while solving questions related to trigonometry, you should always remember the basic trigonometric identities.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

A mixture of o nitrophenol and p nitrophenol can be class 11 chemistry CBSE
