
Intensity of central fringe in interference pattern is $0.01W/{{m}^{2}}$ then find the intensity at a point having the path difference $\dfrac{\lambda }{3}$ on screen from the center (in$mW/{{m}^{2}}$)
$\begin{align}
& A.\text{ }2.5 \\
& B.\text{ }5 \\
& C.\text{ }7.5 \\
& D.\text{ }10 \\
\end{align}$
Answer
456k+ views
Hint: In this question first we have to find intensity of light $\left( {{I}_{0}} \right)$ and phase difference $\left( \phi \right)$in first case central fringe intensity is given so by using intensity equation we can find intensity of light after that we can find phase difference $\phi $ using relation between phase difference and path difference by using this two values we can find the intensity at the given wavelength.
Formula used:
$I=4{{I}_{0}}{{\cos }^{2}}\dfrac{\phi }{2}$
And
$\phi =\dfrac{2\pi }{\lambda }\Delta x$
Complete answer:
It is given that intensity of central fringe on the screen
${{I}_{c}}=0.01W/{{m}^{2}}$
To find the intensity of fringe we will use below formula,
$I=4{{I}_{0}}{{\cos }^{2}}\dfrac{\phi }{2}......\left( 1 \right)$
Where, I = intensity of light after polarization
${{I}_{0}}$= original intensity of light
$\phi =$ Phase difference
To find the intensity of any path difference we will have to find the intensity of original light$\left( {{I}_{0}} \right)$.
Now in case of central fringe $I={{I}_{c}}$ and phase difference $\left( \phi \right)$will be zero now substitute this values in equation (1)
$\begin{align}
& \Rightarrow {{I}_{c}}=4{{I}_{0}}{{\cos }^{2}}\left( 0 \right) \\
& \Rightarrow 0.01=4{{I}_{0}}\left( \because {{\cos }^{2}}\left( 0 \right)=1 \right) \\
& \therefore {{I}_{0}}=\dfrac{0.01}{4}....\left( 2 \right) \\
\end{align}$
Now in order to find the phase difference we will use relation between phase difference and path difference
$\phi =\dfrac{2\pi }{\lambda }\Delta x......\left( 3 \right)$
$\Delta x$ = path difference
$\lambda =$ Wavelength
Value of path difference is given
$\Delta x=\dfrac{\lambda }{3}.....\left( 4 \right)$
Now put values of $\Delta x$ in equation (3)
$\begin{align}
& \Rightarrow \phi =\dfrac{2\pi }{\lambda }\times \dfrac{\lambda }{3} \\
& \therefore \phi =\dfrac{2\pi }{3}.....\left( 5 \right) \\
\end{align}$
Now we will put value of equation (2) and equation (5) in equation (1)
$\begin{align}
& \Rightarrow I=4{{I}_{0}}{{\cos }^{2}}\dfrac{\phi }{2} \\
& \Rightarrow I=4\times \dfrac{0.01}{4}\times {{\cos }^{2}}\left( \dfrac{2\pi }{3\times 2} \right) \\
& \Rightarrow I=0.01\times {{\cos }^{2}}\left( \dfrac{\pi }{3} \right) \\
& \Rightarrow I=0.01\times {{\left( \dfrac{1}{2} \right)}^{2}} \\
& \Rightarrow I=\dfrac{0.01}{4} \\
& \therefore I=0.0025W/{{m}^{2}} \\
\end{align}$
We have to convert in $mW/{{m}^{2}}$ so we have to multiply by 1000 now
$\begin{align}
& \Rightarrow I=0.0025\times 1000 \\
& \therefore I=2.5mW/{{m}^{2}} \\
\end{align}$
So the correct option is (A) .
Note:
Intensity of light in a particular direction per unit solid angle can be defined as the measure of the wavelength-weighted power emitted by a light source. Additionally, when we put value of ${{\cos }^{2}}\left( \dfrac{\pi }{3} \right)$ we have to remember at square sometimes we can do mistakes by putting values of ${{\cos }^{2}}\left( \dfrac{\pi }{3} \right)=\left( \dfrac{1}{2} \right)$ instead of${{\left( \dfrac{1}{2} \right)}^{2}}$ .
Formula used:
$I=4{{I}_{0}}{{\cos }^{2}}\dfrac{\phi }{2}$
And
$\phi =\dfrac{2\pi }{\lambda }\Delta x$
Complete answer:
It is given that intensity of central fringe on the screen
${{I}_{c}}=0.01W/{{m}^{2}}$
To find the intensity of fringe we will use below formula,
$I=4{{I}_{0}}{{\cos }^{2}}\dfrac{\phi }{2}......\left( 1 \right)$
Where, I = intensity of light after polarization
${{I}_{0}}$= original intensity of light
$\phi =$ Phase difference
To find the intensity of any path difference we will have to find the intensity of original light$\left( {{I}_{0}} \right)$.
Now in case of central fringe $I={{I}_{c}}$ and phase difference $\left( \phi \right)$will be zero now substitute this values in equation (1)
$\begin{align}
& \Rightarrow {{I}_{c}}=4{{I}_{0}}{{\cos }^{2}}\left( 0 \right) \\
& \Rightarrow 0.01=4{{I}_{0}}\left( \because {{\cos }^{2}}\left( 0 \right)=1 \right) \\
& \therefore {{I}_{0}}=\dfrac{0.01}{4}....\left( 2 \right) \\
\end{align}$
Now in order to find the phase difference we will use relation between phase difference and path difference
$\phi =\dfrac{2\pi }{\lambda }\Delta x......\left( 3 \right)$
$\Delta x$ = path difference
$\lambda =$ Wavelength
Value of path difference is given
$\Delta x=\dfrac{\lambda }{3}.....\left( 4 \right)$
Now put values of $\Delta x$ in equation (3)
$\begin{align}
& \Rightarrow \phi =\dfrac{2\pi }{\lambda }\times \dfrac{\lambda }{3} \\
& \therefore \phi =\dfrac{2\pi }{3}.....\left( 5 \right) \\
\end{align}$
Now we will put value of equation (2) and equation (5) in equation (1)
$\begin{align}
& \Rightarrow I=4{{I}_{0}}{{\cos }^{2}}\dfrac{\phi }{2} \\
& \Rightarrow I=4\times \dfrac{0.01}{4}\times {{\cos }^{2}}\left( \dfrac{2\pi }{3\times 2} \right) \\
& \Rightarrow I=0.01\times {{\cos }^{2}}\left( \dfrac{\pi }{3} \right) \\
& \Rightarrow I=0.01\times {{\left( \dfrac{1}{2} \right)}^{2}} \\
& \Rightarrow I=\dfrac{0.01}{4} \\
& \therefore I=0.0025W/{{m}^{2}} \\
\end{align}$
We have to convert in $mW/{{m}^{2}}$ so we have to multiply by 1000 now
$\begin{align}
& \Rightarrow I=0.0025\times 1000 \\
& \therefore I=2.5mW/{{m}^{2}} \\
\end{align}$
So the correct option is (A) .
Note:
Intensity of light in a particular direction per unit solid angle can be defined as the measure of the wavelength-weighted power emitted by a light source. Additionally, when we put value of ${{\cos }^{2}}\left( \dfrac{\pi }{3} \right)$ we have to remember at square sometimes we can do mistakes by putting values of ${{\cos }^{2}}\left( \dfrac{\pi }{3} \right)=\left( \dfrac{1}{2} \right)$ instead of${{\left( \dfrac{1}{2} \right)}^{2}}$ .
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Trending doubts
The gas that burns in oxygen with a green flame is class 12 chemistry CBSE

The probability that a leap year will have only 52 class 12 maths CBSE

Describe the poetic devices used in the poem Aunt Jennifers class 12 english CBSE

And such too is the grandeur of the dooms We have imagined class 12 english CBSE

What does the god that failed refer to class 12 english CBSE

Which country did Danny Casey play for class 12 english CBSE
