Answer
Verified
498.3k+ views
Hint: For$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$ , use $\tan \theta
=\dfrac{\sin \theta }{\cos \theta }$, then multiply and divide by $2$and simplify. After that, split the term and use $\sin \theta +\cos \theta =u$and apply the limits. Simplify it, you will get the answer.
Complete step by step solution:
We have to integrate,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$
We know the identity, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$,
So substituting above we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}=\int\limits_{0}^{\dfrac{\pi
}{2}}{\dfrac{d\theta }{1+\dfrac{\sin \theta }{\cos \theta }}}$
Also, multiplying and dividing by $2$ we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}=\int\limits_{0}^{\dfrac{\pi
}{2}}{\dfrac{\cos \theta d\theta }{\cos \theta +\sin \theta }}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi
}{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta }}$
So we can write,
\[\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta
}}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{(\cos \theta +\sin \theta +\cos \theta -\sin \theta
)d\theta }{\cos \theta +\sin \theta }}\]
Now, splitting we get,
\[\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta
}}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{d\theta +\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi
}{2}}{\dfrac{(\cos \theta -\sin \theta )d\theta }{\cos \theta +\sin \theta }}}\]
So let, $\sin \theta +\cos \theta =u$
Now differentiating both sides we get,
$(\cos \theta -\sin \theta )d\theta =du$
For $\theta =\dfrac{\pi }{2}$, $u=1$ and $\theta =0$, $u=1$
\[\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta
}}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{d\theta +\dfrac{1}{2}\int\limits_{1}^{1}{\dfrac{du}{u}}}\]
Now we know that, $\int{\dfrac{1}{u}=\log u+c}$
\[\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta
}}=\dfrac{1}{2}\left[ \theta \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{2}\left[ \log u \right]_{1}^{1}\]
Now, applying the limit we get,
\[\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta
}}=\dfrac{1}{2}\left( \dfrac{\pi }{2}-0 \right)+\dfrac{1}{2}\left( \log 1-\log 1 \right)=\dfrac{\pi
}{4}+0=\dfrac{\pi }{4}\]
We get,
\[\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta
}}=\dfrac{\pi }{4}\]
We get the answer as option(D).
Note: Read the question carefully. You must be familiar with the concept of integration. Also, don’t make silly mistakes. While simplifying, take care that no term is missing. Also, take care of signs. Most of the mistakes occur while simplifying so avoid it.
=\dfrac{\sin \theta }{\cos \theta }$, then multiply and divide by $2$and simplify. After that, split the term and use $\sin \theta +\cos \theta =u$and apply the limits. Simplify it, you will get the answer.
Complete step by step solution:
We have to integrate,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}$
We know the identity, $\tan \theta =\dfrac{\sin \theta }{\cos \theta }$,
So substituting above we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}=\int\limits_{0}^{\dfrac{\pi
}{2}}{\dfrac{d\theta }{1+\dfrac{\sin \theta }{\cos \theta }}}$
Also, multiplying and dividing by $2$ we get,
$\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{d\theta }{1+\tan \theta }}=\int\limits_{0}^{\dfrac{\pi
}{2}}{\dfrac{\cos \theta d\theta }{\cos \theta +\sin \theta }}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi
}{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta }}$
So we can write,
\[\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta
}}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{(\cos \theta +\sin \theta +\cos \theta -\sin \theta
)d\theta }{\cos \theta +\sin \theta }}\]
Now, splitting we get,
\[\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta
}}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{d\theta +\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi
}{2}}{\dfrac{(\cos \theta -\sin \theta )d\theta }{\cos \theta +\sin \theta }}}\]
So let, $\sin \theta +\cos \theta =u$
Now differentiating both sides we get,
$(\cos \theta -\sin \theta )d\theta =du$
For $\theta =\dfrac{\pi }{2}$, $u=1$ and $\theta =0$, $u=1$
\[\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta
}}=\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{d\theta +\dfrac{1}{2}\int\limits_{1}^{1}{\dfrac{du}{u}}}\]
Now we know that, $\int{\dfrac{1}{u}=\log u+c}$
\[\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta
}}=\dfrac{1}{2}\left[ \theta \right]_{0}^{\dfrac{\pi }{2}}+\dfrac{1}{2}\left[ \log u \right]_{1}^{1}\]
Now, applying the limit we get,
\[\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta
}}=\dfrac{1}{2}\left( \dfrac{\pi }{2}-0 \right)+\dfrac{1}{2}\left( \log 1-\log 1 \right)=\dfrac{\pi
}{4}+0=\dfrac{\pi }{4}\]
We get,
\[\dfrac{1}{2}\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{2\cos \theta d\theta }{\cos \theta +\sin \theta
}}=\dfrac{\pi }{4}\]
We get the answer as option(D).
Note: Read the question carefully. You must be familiar with the concept of integration. Also, don’t make silly mistakes. While simplifying, take care that no term is missing. Also, take care of signs. Most of the mistakes occur while simplifying so avoid it.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE