Answer
Verified
497.1k+ views
Hint – We have to consider a diagonal non-singular matrix, diagonal matrices are those which have only diagonal elements while rest all are zero whereas non-singular means that the determinant must not be zero. Use this concept to write a diagonal non-singular matrix. Then use the concept of ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$ to get the inverse.
Complete step-by-step answer:
Consider a diagonal non-singular matrix
$A = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$ (Where a, b, c is any real number and not all equal to 1.)
Now we have to find out the inverse of this matrix.
Now as we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 1 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| - 0 + 0 \\
= a\left( {bc - 0} \right) = abc \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| = 1\left( {bc - 0} \right) = bc,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
0&0 \\
b&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
0&0 \\
0&c
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&c
\end{array}} \right| = 1\left( {ac - 0} \right) = ac,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&b
\end{array}} \right| = 1\left( {ab - 0} \right) = ab \\
\]$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
Now, from equation (1) we have,
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{abc}}\left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{bc}}{{abc}}}&0&0 \\
0&{\dfrac{{ca}}{{abc}}}&0 \\
0&0&{\dfrac{{ab}}{{abc}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0&0 \\
0&{\dfrac{1}{b}}&0 \\
0&0&{\dfrac{1}{c}}
\end{array}} \right]$
So the inverse of matrix A is also a diagonal non-singular matrix having diagonal elements inverted.
Hence, option (d) is correct.
Note – In order to face such types of problems the key concept is simply to have the understanding of basic definitions of scalar, skew-symmetric matrix, zero matrix and diagonal matrix. A scalar matrix is a special diagonal matrix in which all the diagonal elements are the same while the rest are zero. A skew symmetric matrix is one which when transposed gives exactly the same matrix however with a negative sign. Zero matrix is one in which all the elements and a diagonal matrix is being explained in the hint only. Use this concept along with the direct formula to find the inverse of a matrix to get the answer.
Complete step-by-step answer:
Consider a diagonal non-singular matrix
$A = \left[ {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right]$ (Where a, b, c is any real number and not all equal to 1.)
Now we have to find out the inverse of this matrix.
Now as we know ${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right)$
Where $adj\left( A \right) = {\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{12}}}&{{c_{13}}} \\
{{c_{21}}}&{{c_{22}}}&{{c_{23}}} \\
{{c_{31}}}&{{c_{32}}}&{{c_{33}}}
\end{array}} \right]^T}$
Where T is the transpose of matrix, so apply transpose of matrix
\[
\Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right] \\
{A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{\left| A \right|}}\left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]...........\left( 1 \right) \\
\]
Now, first calculate determinant of $A$
$ \Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right|$
Now, expand the determinant
$
\Rightarrow \left| A \right| = \left| {\begin{array}{*{20}{c}}
a&0&0 \\
0&b&0 \\
0&0&c
\end{array}} \right| = a\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| - 0 + 0 \\
= a\left( {bc - 0} \right) = abc \\
$
Now calculate $adj\left( A \right)$
$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{{c_{11}}}&{{c_{21}}}&{{c_{31}}} \\
{{c_{12}}}&{{c_{22}}}&{{c_{32}}} \\
{{c_{13}}}&{{c_{23}}}&{{c_{33}}}
\end{array}} \right]$
So, calculate its internal elements i.e. its cofactors
\[
{c_{11}} = + 1\left| {\begin{array}{*{20}{c}}
b&0 \\
0&c
\end{array}} \right| = 1\left( {bc - 0} \right) = bc,{\text{ }}{{\text{c}}_{21}} = - 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{31}} = + 1\left| {\begin{array}{*{20}{c}}
0&0 \\
b&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0 \\
{c_{12}} = - 1\left| {\begin{array}{*{20}{c}}
0&0 \\
0&c
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{22}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&c
\end{array}} \right| = 1\left( {ac - 0} \right) = ac,{\text{ }}{{\text{c}}_{32}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0 \\
{c_{13}} = + 1\left| {\begin{array}{*{20}{c}}
0&b \\
0&0
\end{array}} \right| = 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{23}} = - 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&0
\end{array}} \right| = - 1\left( {0 - 0} \right) = 0,{\text{ }}{{\text{c}}_{33}} = + 1\left| {\begin{array}{*{20}{c}}
a&0 \\
0&b
\end{array}} \right| = 1\left( {ab - 0} \right) = ab \\
\]$ \Rightarrow adj\left( A \right) = \left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
Now, from equation (1) we have,
${A^{ - 1}} = \dfrac{1}{{\left| A \right|}}adj\left( A \right) = \dfrac{1}{{abc}}\left[ {\begin{array}{*{20}{c}}
{bc}&0&0 \\
0&{ca}&0 \\
0&0&{ab}
\end{array}} \right]$
$ \Rightarrow {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{bc}}{{abc}}}&0&0 \\
0&{\dfrac{{ca}}{{abc}}}&0 \\
0&0&{\dfrac{{ab}}{{abc}}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
{\dfrac{1}{a}}&0&0 \\
0&{\dfrac{1}{b}}&0 \\
0&0&{\dfrac{1}{c}}
\end{array}} \right]$
So the inverse of matrix A is also a diagonal non-singular matrix having diagonal elements inverted.
Hence, option (d) is correct.
Note – In order to face such types of problems the key concept is simply to have the understanding of basic definitions of scalar, skew-symmetric matrix, zero matrix and diagonal matrix. A scalar matrix is a special diagonal matrix in which all the diagonal elements are the same while the rest are zero. A skew symmetric matrix is one which when transposed gives exactly the same matrix however with a negative sign. Zero matrix is one in which all the elements and a diagonal matrix is being explained in the hint only. Use this concept along with the direct formula to find the inverse of a matrix to get the answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE