
Is it true that every relation which is symmetric and transitive is also reflexive ?
Answer
621.3k+ views
Hint-Make use of the definitions of reflexive , symmetric, transitive functions and solve this.
A relation R on a set A is called reflexive if (a,a) $ \in $ R holds for every element a $ \in $ A .i.e. if set A = {a,b} then R = {(a,a), (b,b)} is reflexive relation.
A relation R on a set A is called symmetric if (b,a) $ \in $ R holds when (a,b) $ \in $ R.i.e. The relation R={(4,5),(5,4),(6,5),(5,6)} on set A={4,5,6} is symmetric
A relation R on a set A is called transitive if (a,b) $ \in $ R and (b,c) $ \in $ R then (a,c) $ \in $ R for all a,b,c $ \in $ A.i.e. Relation R={(1,2),(2,3),(1,3)} on set A={1,2,3} is transitive.
So, from these statements we can say that the given statement is false, Let us try to prove this, Let us prove it by taking a counter example
For example , take a relation R ={(1,1,),(1,2),(2,1),(2,2)} on A={1,2,3}
So, from this example we can clearly infer from the definition that the given relation is symmetric since(1,2),(2,1) $ \in $R and transitive since (1,2)(2,1) $ \in $R and also (1,1) $ \in $R but not reflexive since
(3,3) $ \notin $ R
So, from this we can write that the statement is given is false
Note: Only when the given statement is false, we can prove it by taking a counterexample else if the given statement is true , then we cannot solve it by taking a counter example.
A relation R on a set A is called reflexive if (a,a) $ \in $ R holds for every element a $ \in $ A .i.e. if set A = {a,b} then R = {(a,a), (b,b)} is reflexive relation.
A relation R on a set A is called symmetric if (b,a) $ \in $ R holds when (a,b) $ \in $ R.i.e. The relation R={(4,5),(5,4),(6,5),(5,6)} on set A={4,5,6} is symmetric
A relation R on a set A is called transitive if (a,b) $ \in $ R and (b,c) $ \in $ R then (a,c) $ \in $ R for all a,b,c $ \in $ A.i.e. Relation R={(1,2),(2,3),(1,3)} on set A={1,2,3} is transitive.
So, from these statements we can say that the given statement is false, Let us try to prove this, Let us prove it by taking a counter example
For example , take a relation R ={(1,1,),(1,2),(2,1),(2,2)} on A={1,2,3}
So, from this example we can clearly infer from the definition that the given relation is symmetric since(1,2),(2,1) $ \in $R and transitive since (1,2)(2,1) $ \in $R and also (1,1) $ \in $R but not reflexive since
(3,3) $ \notin $ R
So, from this we can write that the statement is given is false
Note: Only when the given statement is false, we can prove it by taking a counterexample else if the given statement is true , then we cannot solve it by taking a counter example.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

