
Is pressure a state function in the van der Waals equation?
Answer
511.5k+ views
Hint :Johannes Diderik van der Waals developed the Van der Waals equation in 1873. The equation is essentially a modified version of the Ideal Gas Law, which states that gases are made up of perfectly elastic collisions between point masses. This rule, however, fails to account for the behaviour of actual gases. As a result, the Van der Waals equation was developed, which aids in the definition of the physical state of a real gas.
Complete Step By Step Answer:
Johannes Diderik van der Waals developed the Van der Waals equation in 1873. The equation is essentially a modified version of the Ideal Gas Law, which states that gases are made up of perfectly elastic collisions between point masses. This rule, however, fails to account for the behaviour of actual gases. As a result, the Van der Waals equation was developed, which aids in the definition of the physical state of a real gas.
Ideal Gas equation: PV = nRT
Van der waals equation: $ (P + \dfrac{{a{n^2}}}{{{v^2}}})(v - nb) = nRT $
P, V, T, n are the gas's pressure, volume, temperature, and moles. Every gas has its own ‘a' and ‘b' constants.
For the correlation and prediction of lower critical solution activity in mixtures containing a solvent and a polymer, the van der Waals equation of state is used. Experimental volumetric data at low pressures are used to approximate the polymer's equation of state parameters.
For every quantity of a and b, there exists a unique value of Pressure
Hence, it is a State function
Van der Waals believed, in practise, the gaseous particles –
Are spheres with a rough surface.
Have a fixed volume and therefore can't be compressed past a certain stage.
When two particles collide at close range, they form an exclusive spherical volume around them.
Gaseous particles do interact with one another. The interactions between inside particles cancel each other out. However, particles on the container's surface and on the walls do not have particles above the surface or on the walls. As a result, there will be net interactions, or dragging, of bulk molecules away from the walls and surface. Molecules that are interacting with each other away from the walls can strike the walls with less force and strain. As a result, the particles in natural gases have a lower pressure than ideal gases.
Note :
There will be net interactions, or dragging, of bulk molecules away from the walls and surface. Molecules that are interacting with each other away from the walls can strike the walls with less force and strain. As a result, the particles in natural gases have a lower pressure than ideal gases.
Complete Step By Step Answer:
Johannes Diderik van der Waals developed the Van der Waals equation in 1873. The equation is essentially a modified version of the Ideal Gas Law, which states that gases are made up of perfectly elastic collisions between point masses. This rule, however, fails to account for the behaviour of actual gases. As a result, the Van der Waals equation was developed, which aids in the definition of the physical state of a real gas.
Ideal Gas equation: PV = nRT
Van der waals equation: $ (P + \dfrac{{a{n^2}}}{{{v^2}}})(v - nb) = nRT $
P, V, T, n are the gas's pressure, volume, temperature, and moles. Every gas has its own ‘a' and ‘b' constants.
For the correlation and prediction of lower critical solution activity in mixtures containing a solvent and a polymer, the van der Waals equation of state is used. Experimental volumetric data at low pressures are used to approximate the polymer's equation of state parameters.
For every quantity of a and b, there exists a unique value of Pressure
Hence, it is a State function
Van der Waals believed, in practise, the gaseous particles –
Are spheres with a rough surface.
Have a fixed volume and therefore can't be compressed past a certain stage.
When two particles collide at close range, they form an exclusive spherical volume around them.
Gaseous particles do interact with one another. The interactions between inside particles cancel each other out. However, particles on the container's surface and on the walls do not have particles above the surface or on the walls. As a result, there will be net interactions, or dragging, of bulk molecules away from the walls and surface. Molecules that are interacting with each other away from the walls can strike the walls with less force and strain. As a result, the particles in natural gases have a lower pressure than ideal gases.
Note :
There will be net interactions, or dragging, of bulk molecules away from the walls and surface. Molecules that are interacting with each other away from the walls can strike the walls with less force and strain. As a result, the particles in natural gases have a lower pressure than ideal gases.
Recently Updated Pages
The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Differentiate between action potential and resting class 12 biology CBSE

Two plane mirrors arranged at right angles to each class 12 physics CBSE

Which of the following molecules is are chiral A I class 12 chemistry CBSE

Name different types of neurons and give one function class 12 biology CBSE

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

What is 1s 2s 2p 3s 3p class 11 chemistry CBSE

Discuss the various forms of bacteria class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

An example of chemosynthetic bacteria is A E coli B class 11 biology CBSE

