Answer
Verified
451.2k+ views
Hint: In this question, we are given the value of \[\sin \theta \] , hence, we can use the following relations which involve \[\sin \theta \] and hence, we can get the values of all other T-ratios.
\[\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \text{sec }\!\!\theta\!\!\text{ }=\dfrac{1}{\cos \theta } \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \text{cosec }\!\!\theta\!\!\text{ }=\dfrac{1}{\sin \theta } \\
& \cot \theta =\dfrac{1}{\tan \theta } \\
\end{align}\]
Complete step by step answer:
Now, by using these above relations, we can get the required results and values.
Now, from the given question we have
\[\sin \theta =\dfrac{\sqrt{3}}{2}\ \ \ \ \ ...(a)\]
Now, by using the trigonometric identity which gives the relation between the function that are mentioned in the hint, we get the following substitute the value from the question and as well as from equation (a)
\[\begin{align}
& \Rightarrow {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \Rightarrow {{\cos }^{2}}\theta =1-{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}\theta =1-\dfrac{3}{4} \\
& \Rightarrow {{\cos }^{2}}\theta =\dfrac{1}{4} \\
& \Rightarrow \cos \theta =\sqrt{\dfrac{1}{4}}=\dfrac{1}{2} \\
\end{align}\]
For finding the value of sec function, we could again use the relations given in the hint as follows
\[\begin{align}
& \Rightarrow \left( \dfrac{1}{\cos \theta } \right)=\sec \theta \\
& \Rightarrow \sec \theta =\left( \dfrac{1}{\dfrac{1}{2}} \right)=2 \\
\end{align}\]
Now, again from the hint, we know that we can get the tan function as follows
\[\begin{align}
& \Rightarrow \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \Rightarrow \tan \theta =\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}} \\
& \Rightarrow \tan \theta =\sqrt{3} \\
\end{align}\]
Now, again referring to the relations, we get the value of $\cot $ function as follows
\[\begin{align}
& \Rightarrow \tan \theta =\dfrac{1}{\cot \theta } \\
& \Rightarrow \cot \theta =\dfrac{1}{\tan \theta } \\
& \Rightarrow \cot \theta =\dfrac{1}{\sqrt{3}} \\
\end{align}\]
Now, for finding the value of cosec function, we can write the following
\[\Rightarrow \text{cosec }\!\!\theta\!\!\text{ }=\dfrac{1}{\sin \theta }\]
\[\begin{align}
& \Rightarrow \text{cosec }\!\!\theta\!\!\text{ }=\dfrac{1}{\dfrac{\sqrt{3}}{2}} \\
& \Rightarrow \text{cosec }\!\!\theta\!\!\text{ }=\dfrac{2}{\sqrt{3}} \\
\end{align}\]
Hence, these are the value of all the T-ratios of \[\theta \] . using the value of sin function that was given in the hint.
So, the correct answer is “Option A”.
Note: The other way of solving the above problem is that:
We have given $\sin \theta =\dfrac{\sqrt{3}}{2}$. And we know that, $\sin \theta =\dfrac{\sqrt{3}}{2}$ when $\theta ={{60}^{\circ }}$ so to find the other trigonometric ratios, we just have to put $\theta ={{60}^{\circ }}$ in those trigonometric ratios.
The trigonometric ratios we have already discussed above:
$\cos \theta =\cos {{60}^{\circ }}$
And we know that $\cos {{60}^{\circ }}=\dfrac{1}{2}$ so the value of $\cos \theta $ is equal to:
$\cos \theta =\dfrac{1}{2}$
$\tan \theta =\tan {{60}^{\circ }}$
We know that the value of $\tan {{60}^{\circ }}=\sqrt{3}$ so substituting this value in the above equation we get,
$\tan \theta =\sqrt{3}$
We know that, $\cot \theta $ is the reciprocal of $\tan \theta $ so:
$\cot \theta =\dfrac{1}{\tan \theta }=\dfrac{1}{\sqrt{3}}$
According to trigonometric ratios, $\sec \theta \And \text{cosec }\!\!\theta\!\!\text{ }$ is the reciprocal of $\cos \theta \And \sin \theta $ so we are going to write the values of $\sec \theta \And \text{cosec }\!\!\theta\!\!\text{ }$ as follows:
$\sec \theta =\dfrac{1}{\cos \theta }=\dfrac{1}{\cos {{60}^{\circ }}}=2$
$\text{cosec }\!\!\theta\!\!\text{ }=\dfrac{1}{\sin \theta }=\dfrac{1}{\sin {{60}^{\circ }}}=\dfrac{2}{\sqrt{3}}$
\[\begin{align}
& {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \text{sec }\!\!\theta\!\!\text{ }=\dfrac{1}{\cos \theta } \\
& \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \text{cosec }\!\!\theta\!\!\text{ }=\dfrac{1}{\sin \theta } \\
& \cot \theta =\dfrac{1}{\tan \theta } \\
\end{align}\]
Complete step by step answer:
Now, by using these above relations, we can get the required results and values.
Now, from the given question we have
\[\sin \theta =\dfrac{\sqrt{3}}{2}\ \ \ \ \ ...(a)\]
Now, by using the trigonometric identity which gives the relation between the function that are mentioned in the hint, we get the following substitute the value from the question and as well as from equation (a)
\[\begin{align}
& \Rightarrow {{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 \\
& \Rightarrow {{\cos }^{2}}\theta =1-{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}} \\
& \Rightarrow {{\cos }^{2}}\theta =1-\dfrac{3}{4} \\
& \Rightarrow {{\cos }^{2}}\theta =\dfrac{1}{4} \\
& \Rightarrow \cos \theta =\sqrt{\dfrac{1}{4}}=\dfrac{1}{2} \\
\end{align}\]
For finding the value of sec function, we could again use the relations given in the hint as follows
\[\begin{align}
& \Rightarrow \left( \dfrac{1}{\cos \theta } \right)=\sec \theta \\
& \Rightarrow \sec \theta =\left( \dfrac{1}{\dfrac{1}{2}} \right)=2 \\
\end{align}\]
Now, again from the hint, we know that we can get the tan function as follows
\[\begin{align}
& \Rightarrow \tan \theta =\dfrac{\sin \theta }{\cos \theta } \\
& \Rightarrow \tan \theta =\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}} \\
& \Rightarrow \tan \theta =\sqrt{3} \\
\end{align}\]
Now, again referring to the relations, we get the value of $\cot $ function as follows
\[\begin{align}
& \Rightarrow \tan \theta =\dfrac{1}{\cot \theta } \\
& \Rightarrow \cot \theta =\dfrac{1}{\tan \theta } \\
& \Rightarrow \cot \theta =\dfrac{1}{\sqrt{3}} \\
\end{align}\]
Now, for finding the value of cosec function, we can write the following
\[\Rightarrow \text{cosec }\!\!\theta\!\!\text{ }=\dfrac{1}{\sin \theta }\]
\[\begin{align}
& \Rightarrow \text{cosec }\!\!\theta\!\!\text{ }=\dfrac{1}{\dfrac{\sqrt{3}}{2}} \\
& \Rightarrow \text{cosec }\!\!\theta\!\!\text{ }=\dfrac{2}{\sqrt{3}} \\
\end{align}\]
Hence, these are the value of all the T-ratios of \[\theta \] . using the value of sin function that was given in the hint.
So, the correct answer is “Option A”.
Note: The other way of solving the above problem is that:
We have given $\sin \theta =\dfrac{\sqrt{3}}{2}$. And we know that, $\sin \theta =\dfrac{\sqrt{3}}{2}$ when $\theta ={{60}^{\circ }}$ so to find the other trigonometric ratios, we just have to put $\theta ={{60}^{\circ }}$ in those trigonometric ratios.
The trigonometric ratios we have already discussed above:
$\cos \theta =\cos {{60}^{\circ }}$
And we know that $\cos {{60}^{\circ }}=\dfrac{1}{2}$ so the value of $\cos \theta $ is equal to:
$\cos \theta =\dfrac{1}{2}$
$\tan \theta =\tan {{60}^{\circ }}$
We know that the value of $\tan {{60}^{\circ }}=\sqrt{3}$ so substituting this value in the above equation we get,
$\tan \theta =\sqrt{3}$
We know that, $\cot \theta $ is the reciprocal of $\tan \theta $ so:
$\cot \theta =\dfrac{1}{\tan \theta }=\dfrac{1}{\sqrt{3}}$
According to trigonometric ratios, $\sec \theta \And \text{cosec }\!\!\theta\!\!\text{ }$ is the reciprocal of $\cos \theta \And \sin \theta $ so we are going to write the values of $\sec \theta \And \text{cosec }\!\!\theta\!\!\text{ }$ as follows:
$\sec \theta =\dfrac{1}{\cos \theta }=\dfrac{1}{\cos {{60}^{\circ }}}=2$
$\text{cosec }\!\!\theta\!\!\text{ }=\dfrac{1}{\sin \theta }=\dfrac{1}{\sin {{60}^{\circ }}}=\dfrac{2}{\sqrt{3}}$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE