Answer
Verified
499.2k+ views
Hint: Since the sum of first n natural number is given by $\dfrac{{n(n + 1)}}{2}$ , with the help of this calculate the value of n and then put it in the formula $\sum {{n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}} $ to calculate the sum of square of n terms.
Given that:
$\sum {n = 55} $ …………………. (1)
We know that sum of first n natural number
$ = \dfrac{{n(n + 1)}}{2}$ ……………………. (2)
Now, equating equation 1 with 2 to get the value of n
$
\Rightarrow \dfrac{{n(n + 1)}}{2} = 55 \\
\Rightarrow {n^2} + n = 110 \\
\Rightarrow {n^2} + n - 110 = 0 \\
$
Solving the quadratic equation, we get
$
\Rightarrow {n^2} - 10n + 11n - 110 = 0 \\
\Rightarrow (n + 11)(n - 10) = 0 \\
\Rightarrow n = 10 \\
$
Neglecting the negative value of n because n is a natural number.
Using the formula to calculate sum of n square terms
$\sum {{n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}} $
Putting the value of n in this formula, we get
$
= \dfrac{{10(10 + 1)(2 \times 10 + 1)}}{6} \\
= \dfrac{{10 \times 11 \times 21}}{6} \\
= 385 \\
$
Hence, the sum of squares of n terms is 385.
Option A is the correct option.
Note: To solve these types of series problems, remember the formula of sum of n natural numbers, sum of square of n natural numbers and sum of square of cube of n natural numbers. After this see the conditions given in the question and then see number of unknown variables is equal to number of equations, then start solving for unknown variables.
Given that:
$\sum {n = 55} $ …………………. (1)
We know that sum of first n natural number
$ = \dfrac{{n(n + 1)}}{2}$ ……………………. (2)
Now, equating equation 1 with 2 to get the value of n
$
\Rightarrow \dfrac{{n(n + 1)}}{2} = 55 \\
\Rightarrow {n^2} + n = 110 \\
\Rightarrow {n^2} + n - 110 = 0 \\
$
Solving the quadratic equation, we get
$
\Rightarrow {n^2} - 10n + 11n - 110 = 0 \\
\Rightarrow (n + 11)(n - 10) = 0 \\
\Rightarrow n = 10 \\
$
Neglecting the negative value of n because n is a natural number.
Using the formula to calculate sum of n square terms
$\sum {{n^2} = \dfrac{{n(n + 1)(2n + 1)}}{6}} $
Putting the value of n in this formula, we get
$
= \dfrac{{10(10 + 1)(2 \times 10 + 1)}}{6} \\
= \dfrac{{10 \times 11 \times 21}}{6} \\
= 385 \\
$
Hence, the sum of squares of n terms is 385.
Option A is the correct option.
Note: To solve these types of series problems, remember the formula of sum of n natural numbers, sum of square of n natural numbers and sum of square of cube of n natural numbers. After this see the conditions given in the question and then see number of unknown variables is equal to number of equations, then start solving for unknown variables.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE