Answer
Verified
468.6k+ views
Hint: The time required for a quantity to reduce its value up to half as compared to the initial value. The formula for calculating the rate constant from half-life for the first-order reaction will be: $\text{K = }\frac{0.693}{{{\text{t}}_{1/2}}}\,$.
Here, K is the rate constant and ${{\text{t}}_{1/2}}$ is the half-life period of a substance.
Complete answer:
-It is given that the half-life of potassium is $\text{1}\text{.3 }\times \text{ 1}{{\text{0}}^{9}}\text{ years}$, we can calculate the rate constant (k).
-As we know that radioactive decay follows first-order of kinetics, so the formula of the rate constant for the first order will be $\text{K = }\dfrac{0.693}{{{\text{t}}_{1/2}}}\,$. So, $\text{K = }\dfrac{0.693}{\text{1}\text{.3 }\times \text{ 1}{{\text{0}}^{9}}}\ \,\text{= }\,5.3\text{ }\times \,\text{ 1}{{\text{0}}^{-8}}$.
-Now, we have to calculate the amount of K in the human body whose weight is 75 kg.
-As it is given that in nature and the human body, the amount of K is 0.35% and 0.012% respectively.
-So, the amount of K in 75 kg or $75\text{ }\times \,\text{ 1}{{\text{0}}^{3}}$ gram human body will be: $\text{K = }\dfrac{0.35}{\text{100}}\text{ }\times \text{ }\dfrac{0.012}{100}\text{ }\times \text{ }\,75\text{ }\times \,\text{ 1}{{\text{0}}^{3}}\text{ = 0}\text{.0315g}$.
-Now, to calculate the no. of molecules of \[\text{K}_{19}^{40}\] in 0.0315g, we will use the formula:
$\dfrac{\text{No}\text{. of molecules}}{6.022\text{ }\,\times \text{ 1}{{\text{0}}^{23}}}\text{ = }\dfrac{\text{Mass}}{\text{Molar mass}}$
$\text{No}\text{. of molecules}\text{ = }\frac{0.0315}{40}\text{ }\ \times \text{ }6.022\text{ }\,\times \text{ 1}{{\text{0}}^{23}}\text{ = 0}\text{.47 }\times \text{ 1}{{\text{0}}^{21}}$.
-Now, to calculate the total radioactive we will use the formula of the rate of decay i.e. $\text{R = }\lambda \text{ }\times \text{ N}$.
-Here, R is the rate constant, $\lambda $ is the decay constant and N is the no. of atoms.
-As we have calculated the value of $\lambda $ i.e. $\text{5}\text{.3 }\times \text{ 1}{{\text{0}}^{-8}}\ \text{Years}$.
-So, $\text{R = 5}\text{.3 }\times \text{ 1}{{\text{0}}^{-8}}\ \times \text{ 0}\text{.47 }\times \text{ 1}{{\text{0}}^{21}}\ \text{Years = 2}\text{.49 }\times \text{ 1}{{\text{0}}^{13}}\ \text{Years}$.
Note: First order reaction are those reactions in which the rate of reaction (K) is directly proportional to the concentration of the reactants. In decay, the radioactive atoms decay per unit is directly proportional to the total no. of atoms that’s why it is a first-order reaction.
Here, K is the rate constant and ${{\text{t}}_{1/2}}$ is the half-life period of a substance.
Complete answer:
-It is given that the half-life of potassium is $\text{1}\text{.3 }\times \text{ 1}{{\text{0}}^{9}}\text{ years}$, we can calculate the rate constant (k).
-As we know that radioactive decay follows first-order of kinetics, so the formula of the rate constant for the first order will be $\text{K = }\dfrac{0.693}{{{\text{t}}_{1/2}}}\,$. So, $\text{K = }\dfrac{0.693}{\text{1}\text{.3 }\times \text{ 1}{{\text{0}}^{9}}}\ \,\text{= }\,5.3\text{ }\times \,\text{ 1}{{\text{0}}^{-8}}$.
-Now, we have to calculate the amount of K in the human body whose weight is 75 kg.
-As it is given that in nature and the human body, the amount of K is 0.35% and 0.012% respectively.
-So, the amount of K in 75 kg or $75\text{ }\times \,\text{ 1}{{\text{0}}^{3}}$ gram human body will be: $\text{K = }\dfrac{0.35}{\text{100}}\text{ }\times \text{ }\dfrac{0.012}{100}\text{ }\times \text{ }\,75\text{ }\times \,\text{ 1}{{\text{0}}^{3}}\text{ = 0}\text{.0315g}$.
-Now, to calculate the no. of molecules of \[\text{K}_{19}^{40}\] in 0.0315g, we will use the formula:
$\dfrac{\text{No}\text{. of molecules}}{6.022\text{ }\,\times \text{ 1}{{\text{0}}^{23}}}\text{ = }\dfrac{\text{Mass}}{\text{Molar mass}}$
$\text{No}\text{. of molecules}\text{ = }\frac{0.0315}{40}\text{ }\ \times \text{ }6.022\text{ }\,\times \text{ 1}{{\text{0}}^{23}}\text{ = 0}\text{.47 }\times \text{ 1}{{\text{0}}^{21}}$.
-Now, to calculate the total radioactive we will use the formula of the rate of decay i.e. $\text{R = }\lambda \text{ }\times \text{ N}$.
-Here, R is the rate constant, $\lambda $ is the decay constant and N is the no. of atoms.
-As we have calculated the value of $\lambda $ i.e. $\text{5}\text{.3 }\times \text{ 1}{{\text{0}}^{-8}}\ \text{Years}$.
-So, $\text{R = 5}\text{.3 }\times \text{ 1}{{\text{0}}^{-8}}\ \times \text{ 0}\text{.47 }\times \text{ 1}{{\text{0}}^{21}}\ \text{Years = 2}\text{.49 }\times \text{ 1}{{\text{0}}^{13}}\ \text{Years}$.
Note: First order reaction are those reactions in which the rate of reaction (K) is directly proportional to the concentration of the reactants. In decay, the radioactive atoms decay per unit is directly proportional to the total no. of atoms that’s why it is a first-order reaction.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE