Answer
Verified
430.8k+ views
Hint: In this question, we are given two fractions and we have to find if they are proportional or not. Proportional means that one fraction is a multiple of the other fraction, that is, if we multiply one fraction by some number and we get the other fraction, then we can say that the two fractions form a pair of proportions. For example, if one fraction is $\dfrac{a}{b}$ and the other fraction is $\dfrac{{2a}}{{2b}}$ , then these two fractions form a proportion as on simplifying the second fraction, we get the first fraction as the answer. This way we can solve the given question.
Complete step-by-step solution:
We are given two fractions \[\dfrac{6}{9}\] and $\dfrac{2}{3}$ , $\dfrac{6}{9}$ can be written as $\dfrac{6}{9} = \dfrac{{2 \times 3}}{{3 \times 3}}$
As 3 is common in both the numerator and the denominator, so we cancel it out and get –
\[\dfrac{6}{9} = \dfrac{2}{3}\]
Hence, the pair \[\dfrac{6}{9}\] and $\dfrac{2}{3}$ forms a proportion.
Note: A fraction is defined as an expression in which terms are present that are separated by a horizontal line, the term on the upper side of the horizontal line is called the numerator and the term on the lower side is called the denominator. For simplifying a fraction, we write the numerator and the denominator as a product of its prime factors and cancel out the common factors. This question can also be solved by equating the given two fractions and then cross multiplying them –
$
\dfrac{6}{9} = \dfrac{2}{3} \\
\Rightarrow 6 \times 3 = 2 \times 9 \\
\Rightarrow 18 = 18 \\
$
As 18 is equal to 18, so the fractions do show a proportion.
Complete step-by-step solution:
We are given two fractions \[\dfrac{6}{9}\] and $\dfrac{2}{3}$ , $\dfrac{6}{9}$ can be written as $\dfrac{6}{9} = \dfrac{{2 \times 3}}{{3 \times 3}}$
As 3 is common in both the numerator and the denominator, so we cancel it out and get –
\[\dfrac{6}{9} = \dfrac{2}{3}\]
Hence, the pair \[\dfrac{6}{9}\] and $\dfrac{2}{3}$ forms a proportion.
Note: A fraction is defined as an expression in which terms are present that are separated by a horizontal line, the term on the upper side of the horizontal line is called the numerator and the term on the lower side is called the denominator. For simplifying a fraction, we write the numerator and the denominator as a product of its prime factors and cancel out the common factors. This question can also be solved by equating the given two fractions and then cross multiplying them –
$
\dfrac{6}{9} = \dfrac{2}{3} \\
\Rightarrow 6 \times 3 = 2 \times 9 \\
\Rightarrow 18 = 18 \\
$
As 18 is equal to 18, so the fractions do show a proportion.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE