Answer
Verified
429k+ views
Hint: We first describe the difference between the brackets and parentheses. The main difference being the inclusion and exclusion of the endpoints. We understand the concept with an example.
Complete answer:
We can write the domain and range in interval notation, which uses values within brackets to describe a set of numbers. In interval notation, we use a square bracket $\left[ {} \right]$ when the set includes the endpoint and a parenthesis \[\left( {} \right)\] to indicate that the endpoint is either not included or the interval is unbounded.
Bracket refers to the equality to the point and parenthesis refers to the strict inequalities.
We take an arbitrary value a. if $a\in \left( x,y \right)$ then it means $x < a < y$ and if $a\in \left[ x,y \right]$ then it means $x\le a\le y$.
In brackets the value of a can be equal to the endpoints or the boundary values but in parenthesis the value of a can’t be equal to the endpoints or the boundary values.
In real number cases we can say that $4\notin \left( 4,5 \right)$ but $4\in \left[ 4,5 \right]$. Same thing can be said about the number 5.
Note:
The use of the brackets and parentheses also describes the inclusiveness and exclusiveness. There are two more combined ways to express the inclusion and exclusion of endpoints. These are $\left[ {} \right),\left( {} \right]$. These are mixed forms.
Complete answer:
We can write the domain and range in interval notation, which uses values within brackets to describe a set of numbers. In interval notation, we use a square bracket $\left[ {} \right]$ when the set includes the endpoint and a parenthesis \[\left( {} \right)\] to indicate that the endpoint is either not included or the interval is unbounded.
Bracket refers to the equality to the point and parenthesis refers to the strict inequalities.
We take an arbitrary value a. if $a\in \left( x,y \right)$ then it means $x < a < y$ and if $a\in \left[ x,y \right]$ then it means $x\le a\le y$.
In brackets the value of a can be equal to the endpoints or the boundary values but in parenthesis the value of a can’t be equal to the endpoints or the boundary values.
In real number cases we can say that $4\notin \left( 4,5 \right)$ but $4\in \left[ 4,5 \right]$. Same thing can be said about the number 5.
Note:
The use of the brackets and parentheses also describes the inclusiveness and exclusiveness. There are two more combined ways to express the inclusion and exclusion of endpoints. These are $\left[ {} \right),\left( {} \right]$. These are mixed forms.
Recently Updated Pages
A particle is undergoing a horizontal circle of radius class 11 physics CBSE
A particle is thrown vertically upwards with a velocity class 11 physics CBSE
A particle is rotated in a vertical circle by connecting class 11 physics CBSE
A particle is projected with a velocity v such that class 11 physics CBSE
A particle is projected with a velocity u making an class 11 physics CBSE
A particle is projected vertically upwards and it reaches class 11 physics CBSE
Trending doubts
Find the value of the expression given below sin 30circ class 11 maths CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
On which part of the tongue most of the taste gets class 11 biology CBSE
State and prove Bernoullis theorem class 11 physics CBSE
Who is the leader of the Lok Sabha A Chief Minister class 11 social science CBSE