Answer
Verified
431.1k+ views
Hint: In this question, we have to find when to use the ambiguous case. As we know, an ambiguous case occurs when two sides and an angle opposite to one of them is not known to us, which means when we use the laws of sines to determine the missing angle of a triangle. Thus, to solve this problem, we will use four different cases with respect to the sides of the triangle, to get the required solution for the problem.
Complete step-by-step answer:
According to the problem, we have to find when to use ambiguous cases.
We will use an ambiguous case when the two sides of a triangle and an angle opposite to one of them, that is SSA is not known to us.
Thus, we will use different cases to solve this problem.
Case 1: When one of the sides of the triangle is less than the height of the triangle, that is
$a < h$ , where a is the side and h is the height of the triangle.
Thus, we will draw the figure for the same, we get
As we see, the above figure is not a closed figure, hence no triangle is formed for this case.
Case 2: When one of the sides of the triangle is equal to the height of the triangle, that is
$a = h$ , where a is the side and h is the height of the triangle.
Thus, we will draw the graph for the same, we get
As we see, the above figure is a closed figure, hence one triangle is formed for this case, that is a right-angle triangle.
Case 3: When one of the sides of the triangle is greater than the height but less than the other side of the triangle, that is
$h < a < c$ , where a, c is the side and h is the height of the triangle.
Thus, we will draw the graph for the same, we get
As we see, the above figure is a closed figure, hence we get two different triangles for this case, that is an acute triangle.
Case 4: When one of the sides of the triangle is greater than the height and is greater than the other side of the triangle, that is
$h < c \le a$ , where a, c is the side and h is the height of the triangle.
Thus, we will draw the graph for the same, we get
As we see, the above figure is a closed figure, hence we get one different triangle for this case.
Therefore, we see how to use ambiguous cases when finding possible lengths of triangles.
Note: While solving this problem, do not forget the definition of the ambiguous case of the triangle. Also, do mention all four cases, to get the accurate answer for the problem.
Complete step-by-step answer:
According to the problem, we have to find when to use ambiguous cases.
We will use an ambiguous case when the two sides of a triangle and an angle opposite to one of them, that is SSA is not known to us.
Thus, we will use different cases to solve this problem.
Case 1: When one of the sides of the triangle is less than the height of the triangle, that is
$a < h$ , where a is the side and h is the height of the triangle.
Thus, we will draw the figure for the same, we get
As we see, the above figure is not a closed figure, hence no triangle is formed for this case.
Case 2: When one of the sides of the triangle is equal to the height of the triangle, that is
$a = h$ , where a is the side and h is the height of the triangle.
Thus, we will draw the graph for the same, we get
As we see, the above figure is a closed figure, hence one triangle is formed for this case, that is a right-angle triangle.
Case 3: When one of the sides of the triangle is greater than the height but less than the other side of the triangle, that is
$h < a < c$ , where a, c is the side and h is the height of the triangle.
Thus, we will draw the graph for the same, we get
As we see, the above figure is a closed figure, hence we get two different triangles for this case, that is an acute triangle.
Case 4: When one of the sides of the triangle is greater than the height and is greater than the other side of the triangle, that is
$h < c \le a$ , where a, c is the side and h is the height of the triangle.
Thus, we will draw the graph for the same, we get
As we see, the above figure is a closed figure, hence we get one different triangle for this case.
Therefore, we see how to use ambiguous cases when finding possible lengths of triangles.
Note: While solving this problem, do not forget the definition of the ambiguous case of the triangle. Also, do mention all four cases, to get the accurate answer for the problem.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE