
l and m are two parallel lines intersected by another pair of parallel lines p and q. Show that $\Delta ABC \cong \Delta CDA$
Answer
623.7k+ views
Hint- Use the properties of similarity of triangles.
Given: $l\parallel m$ and $p\parallel q$
Taking $l\parallel m$ and $AC$ is the traversal,
$\angle ACB = \angle CAD{\text{ }} \ldots \ldots \left( 1 \right){\text{ }}\left( {\because {\text{Alternate angles}}} \right)$
Considering $p\parallel q$ and $AC$ is the traversal,
$\angle BAC = \angle DCA{\text{ }} \ldots \ldots \left( 2 \right){\text{ }}\left( {\because {\text{Alternate angles}}} \right)$
In $\Delta ABC$ and $\Delta CDA$:
$
\angle ACB = \angle CAD{\text{ }}\left( {{\text{from }}\left( 1 \right)} \right) \\
AC = CA {\text{ }}\left( {{\text{common}}} \right) \\
\angle BAC = \angle DCA{\text{ }}\left( {{\text{from }}\left( 2 \right)} \right) \\
$
Therefore, using ASA congruence rule, we can say:
${\text{ }}\Delta ABC \cong \Delta CDA$
Hence Proved.
Note- When two triangles are congruent, they will have exactly the same three sides and exactly the same three angles. Although these equal sides and angles may not be at the exact same position. Also, there are criteria like SAS, ASA, SSS to prove triangles are congruent
Given: $l\parallel m$ and $p\parallel q$
Taking $l\parallel m$ and $AC$ is the traversal,
$\angle ACB = \angle CAD{\text{ }} \ldots \ldots \left( 1 \right){\text{ }}\left( {\because {\text{Alternate angles}}} \right)$
Considering $p\parallel q$ and $AC$ is the traversal,
$\angle BAC = \angle DCA{\text{ }} \ldots \ldots \left( 2 \right){\text{ }}\left( {\because {\text{Alternate angles}}} \right)$
In $\Delta ABC$ and $\Delta CDA$:
$
\angle ACB = \angle CAD{\text{ }}\left( {{\text{from }}\left( 1 \right)} \right) \\
AC = CA {\text{ }}\left( {{\text{common}}} \right) \\
\angle BAC = \angle DCA{\text{ }}\left( {{\text{from }}\left( 2 \right)} \right) \\
$
Therefore, using ASA congruence rule, we can say:
${\text{ }}\Delta ABC \cong \Delta CDA$
Hence Proved.
Note- When two triangles are congruent, they will have exactly the same three sides and exactly the same three angles. Although these equal sides and angles may not be at the exact same position. Also, there are criteria like SAS, ASA, SSS to prove triangles are congruent
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Who is the Brand Ambassador of Incredible India?

