Answer
Verified
471.3k+ views
Hint: An array of unit cells makes up the crystal lattice in a solid. In a crystal lattice, the lattice points in a unit cell are shared by adjacent unit cells.
Complete answer:
-A set of infinite, arranged points which are related to each other by translational symmetry is called a crystal lattice. In simple terms, it is the arrangement of atoms in a solid. Crystal lattice is made up of a unit cell. When this unit cell is in cube shape, then the whole crystal is said to be a cubic crystal system. There are three types or varieties of cubic system. These are primitive cubic, body centered cubic and face-centered cubic systems.
-Face-centered cubic systems have their atoms present in each face as well as in the corners of a unit cell. For a unit cell, there are 8 corners and each corner has an atom. Each atom in the corner is shared by 8 adjacent unit cells. So, for a unit cell only $\frac{1}{8}th$ of an atom contributed. Atoms at the corners per unit cell=$8\times \frac{1}{8}=1$ atom.
Similarly, each atom present at the face of a unit cell is shared by an adjacent unit cell. So, atoms present at the face contribute only half in a unit cell. There are 6 faces in a unit cell, so,
Atoms at the face-center per unit cell=$6\times \frac{1}{2}=3$
Thus, total number of atoms present in a unit cell of a face-centered lattice is = $8\times \frac{1}{8}+6\times \frac{1}{3}=1+3=4$
Total number of atoms is the same as the number of lattice points.
-In face-centered tetragonal system, the atoms are present in each corner and are shared by 8 adjacent unit cells. So, lattice points contributed by the corners are =$8\times \frac{1}{8}=1$ atom.
Similarly, there are 6 faces and each lattice point is shared by 2 unit cells. So, the lattice points contributed by the faces in a unit cell $6\times \frac{1}{2}=3$
Total number of lattice points per unit cell=$8\times \frac{1}{8}+6\times \frac{1}{3}=1+3=4$
-In body-centered, one lattice point is present in the body centre of the unit cell other than the points present in the corners. SO contribution of the lattice point in a unit cell by the corners=$8\times \frac{1}{8}=1$ and at the point center it is 1 lattice point.
So, the total number of lattice points contributed per unit cell=1+1=2.
Thus, the number of lattice points contributed per unit cell by
(i)Face-centered cubic is 4.
(ii)Face-centered tetragonal is 4..
(iii)Body-centered is 2.
Note:
Face centered cubic system and face-centered tetragonal system unit cells are different. In a face-centered cubic system, the unit cell is cubic and in face-centered tetragonal the unit cell is tetragonal shape.
Complete answer:
-A set of infinite, arranged points which are related to each other by translational symmetry is called a crystal lattice. In simple terms, it is the arrangement of atoms in a solid. Crystal lattice is made up of a unit cell. When this unit cell is in cube shape, then the whole crystal is said to be a cubic crystal system. There are three types or varieties of cubic system. These are primitive cubic, body centered cubic and face-centered cubic systems.
-Face-centered cubic systems have their atoms present in each face as well as in the corners of a unit cell. For a unit cell, there are 8 corners and each corner has an atom. Each atom in the corner is shared by 8 adjacent unit cells. So, for a unit cell only $\frac{1}{8}th$ of an atom contributed. Atoms at the corners per unit cell=$8\times \frac{1}{8}=1$ atom.
Similarly, each atom present at the face of a unit cell is shared by an adjacent unit cell. So, atoms present at the face contribute only half in a unit cell. There are 6 faces in a unit cell, so,
Atoms at the face-center per unit cell=$6\times \frac{1}{2}=3$
Thus, total number of atoms present in a unit cell of a face-centered lattice is = $8\times \frac{1}{8}+6\times \frac{1}{3}=1+3=4$
Total number of atoms is the same as the number of lattice points.
-In face-centered tetragonal system, the atoms are present in each corner and are shared by 8 adjacent unit cells. So, lattice points contributed by the corners are =$8\times \frac{1}{8}=1$ atom.
Similarly, there are 6 faces and each lattice point is shared by 2 unit cells. So, the lattice points contributed by the faces in a unit cell $6\times \frac{1}{2}=3$
Total number of lattice points per unit cell=$8\times \frac{1}{8}+6\times \frac{1}{3}=1+3=4$
-In body-centered, one lattice point is present in the body centre of the unit cell other than the points present in the corners. SO contribution of the lattice point in a unit cell by the corners=$8\times \frac{1}{8}=1$ and at the point center it is 1 lattice point.
So, the total number of lattice points contributed per unit cell=1+1=2.
Thus, the number of lattice points contributed per unit cell by
(i)Face-centered cubic is 4.
(ii)Face-centered tetragonal is 4..
(iii)Body-centered is 2.
Note:
Face centered cubic system and face-centered tetragonal system unit cells are different. In a face-centered cubic system, the unit cell is cubic and in face-centered tetragonal the unit cell is tetragonal shape.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE