Answer
Verified
497.1k+ views
Hint: The values of length, breadth and height are the zeroes of the given cubic polynomial. So we have to find out the roots of the polynomial to get the required values.
Complete step-by-step answer:
Here it is given that the values of length, breadth and height are the zeroes of the polynomial: ${{x}^{3}}-6{{x}^{2}}+11x-6$
Zeros of a polynomial can be defined as the points where the polynomial becomes zero on the whole. They are also known as the roots of the polynomial.
Here the given polynomial is of degree three. Polynomial of degree three is known as a cubic polynomial. Cubic polynomials have three roots. We have to find out those roots.
There we have to solve the following equation:
${{x}^{3}}-6{{x}^{2}}+11x-6=0$
If we put $x=1$ on the left hand side of the equation we will get zero.
${{x}^{3}}-6{{x}^{2}}+11x-6={{\left( 1 \right)}^{3}}-6{{\left( 1 \right)}^{2}}+11-6=12-12=0$
That means 1 is a root of the given polynomial. If 1 is root that means $\left( x-1 \right)$ will be a factor of the polynomial. We can rearrange the polynomial as:
$\begin{align}
& {{x}^{3}}-6{{x}^{2}}+11x-6 \\
& ={{x}^{2}}\left( x-1 \right)-5x\left( x-1 \right)+6\left( x-1 \right) \\
\end{align}$
We have $\left( x-1 \right)$ with each of the terms. Therefore we can take it out as a common factor.
$=\left( x-1 \right)\left( {{x}^{2}}-5x+6 \right)$
$\begin{align}
& =\left( x-1 \right)\left( {{x}^{2}}-2x-3x+6 \right) \\
& =\left( x-1 \right)\left( x\left( x-2 \right)-3\left( x-2 \right) \right) \\
& =\left( x-1 \right)\left( x-2 \right)\left( x-3 \right) \\
\end{align}$
Therefore,
${{x}^{3}}-6{{x}^{2}}+11x-6=\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)$
Now we have,
$\begin{align}
& {{x}^{3}}-6{{x}^{2}}+11x-6=0 \\
& \Rightarrow \left( x-1 \right)\left( x-2 \right)\left( x-3 \right)=0 \\
\end{align}$
Hence the roots of the equation are,
$\begin{align}
& x-1=0\Rightarrow x=1 \\
& x-2=0\Rightarrow x=2 \\
& x-3=0\Rightarrow x=3 \\
\end{align}$
The three roots are 1, 2 and 3.
Therefore, the length, breadth and height are 1, 2 and 3 respectively.
Note: Alternatively, we can solve the equation by using the relation between roots and coefficients of the polynomial equation. We know that one root is 1.
Sum of the three roots = 6
Therefore sum of the other two roots $=6-1=5$.
And the product of the three roots is also 6. One of them is 1. Therefore the product of two roots is 6.
Hence the other two roots are 2 and 3.
Complete step-by-step answer:
Here it is given that the values of length, breadth and height are the zeroes of the polynomial: ${{x}^{3}}-6{{x}^{2}}+11x-6$
Zeros of a polynomial can be defined as the points where the polynomial becomes zero on the whole. They are also known as the roots of the polynomial.
Here the given polynomial is of degree three. Polynomial of degree three is known as a cubic polynomial. Cubic polynomials have three roots. We have to find out those roots.
There we have to solve the following equation:
${{x}^{3}}-6{{x}^{2}}+11x-6=0$
If we put $x=1$ on the left hand side of the equation we will get zero.
${{x}^{3}}-6{{x}^{2}}+11x-6={{\left( 1 \right)}^{3}}-6{{\left( 1 \right)}^{2}}+11-6=12-12=0$
That means 1 is a root of the given polynomial. If 1 is root that means $\left( x-1 \right)$ will be a factor of the polynomial. We can rearrange the polynomial as:
$\begin{align}
& {{x}^{3}}-6{{x}^{2}}+11x-6 \\
& ={{x}^{2}}\left( x-1 \right)-5x\left( x-1 \right)+6\left( x-1 \right) \\
\end{align}$
We have $\left( x-1 \right)$ with each of the terms. Therefore we can take it out as a common factor.
$=\left( x-1 \right)\left( {{x}^{2}}-5x+6 \right)$
$\begin{align}
& =\left( x-1 \right)\left( {{x}^{2}}-2x-3x+6 \right) \\
& =\left( x-1 \right)\left( x\left( x-2 \right)-3\left( x-2 \right) \right) \\
& =\left( x-1 \right)\left( x-2 \right)\left( x-3 \right) \\
\end{align}$
Therefore,
${{x}^{3}}-6{{x}^{2}}+11x-6=\left( x-1 \right)\left( x-2 \right)\left( x-3 \right)$
Now we have,
$\begin{align}
& {{x}^{3}}-6{{x}^{2}}+11x-6=0 \\
& \Rightarrow \left( x-1 \right)\left( x-2 \right)\left( x-3 \right)=0 \\
\end{align}$
Hence the roots of the equation are,
$\begin{align}
& x-1=0\Rightarrow x=1 \\
& x-2=0\Rightarrow x=2 \\
& x-3=0\Rightarrow x=3 \\
\end{align}$
The three roots are 1, 2 and 3.
Therefore, the length, breadth and height are 1, 2 and 3 respectively.
Note: Alternatively, we can solve the equation by using the relation between roots and coefficients of the polynomial equation. We know that one root is 1.
Sum of the three roots = 6
Therefore sum of the other two roots $=6-1=5$.
And the product of the three roots is also 6. One of them is 1. Therefore the product of two roots is 6.
Hence the other two roots are 2 and 3.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE