LCM of \[81,18\] and \[36\] is:
A) 81
B) 162
C) 324
D) 36
Answer
Verified
442.2k+ views
Hint:
Here, we will first find the factors of the given numbers separately by using the method of Prime Factorization. We will then multiply the factors with highest power and find the LCM of the given numbers.
Complete step by step solution:
We are given the numbers 81,18 and 36.
Now we will find the factors for the numbers to find the LCM of these numbers by using the prime factorization method.
We will find the factors of 81.
We know that 81 is the square of 9 and 9 is the square of 3. So, we can write
\[81 = {9^2}\]
\[ \Rightarrow 81 = {\left( {{3^2}} \right)^2} = {3^4}\]
Thus the factors of 81 are \[{3^4}\] .
We will find the factors of 18 by using the method of prime factorization.
We can see that 18 is an even number, so dividing it by the least prime number 2. Therefore, we get
\[18 \div 2 = 9\]
Now we will divide 9 by the next least prime number 3, we get
\[9 \div 3 = 3\]
Now as we have obtained our quotient as prime number, we will not factorize it further.
Thus the factors of 18 are \[{2^1} \times {3^2}\].
We will find the factors of 36 by using the method of prime factorization.
We can see that 36 is an even number, so dividing it by the least prime number 2. Therefore, we get
\[36 \div 2 = 18\]
We can see that 18 is an even number, so dividing it by 2 again. Therefore, we get
\[18 \div 2 = 9\]
Now we will divide 9 by the next least prime number 3, we get
\[9 \div 3 = 3\]
Now as we have obtained our quotient as prime number, we will not factorize it further.
Thus the factors of 36 are \[{2^2} \times {3^2}\].
Now, we will find the LCM from these factors.
The LCM of these factors would be the highest exponent of the prime factors.
LCM of 81, 18, 36 \[ = {3^4} \times {2^2}\]
Applying the exponent on the terms, we get
\[ \Rightarrow \] LCM of 81, 18, 36 \[ = 81 \times 4\]
Multiplying the terms, we get
\[ \Rightarrow \] LCM of 81, 18, 36 \[ = 324\]
Therefore, the LCM of 81, 18, 36 is 324.
Thus, option (C) is the correct answer.
Note:
We know that the Least Common Multiple of the numbers is the smallest number that is divisible by all the numbers. LCM is the highest exponent of the prime factors. So, we will find the factors to find the LCM of numbers. Prime factorization is a method of writing the factors in terms of the power of prime numbers. Common Factor is the factor that is common to all the numbers whereas the prime factors are the factors, which is the product of the powers of the prime numbers.
Here, we will first find the factors of the given numbers separately by using the method of Prime Factorization. We will then multiply the factors with highest power and find the LCM of the given numbers.
Complete step by step solution:
We are given the numbers 81,18 and 36.
Now we will find the factors for the numbers to find the LCM of these numbers by using the prime factorization method.
We will find the factors of 81.
We know that 81 is the square of 9 and 9 is the square of 3. So, we can write
\[81 = {9^2}\]
\[ \Rightarrow 81 = {\left( {{3^2}} \right)^2} = {3^4}\]
Thus the factors of 81 are \[{3^4}\] .
We will find the factors of 18 by using the method of prime factorization.
We can see that 18 is an even number, so dividing it by the least prime number 2. Therefore, we get
\[18 \div 2 = 9\]
Now we will divide 9 by the next least prime number 3, we get
\[9 \div 3 = 3\]
Now as we have obtained our quotient as prime number, we will not factorize it further.
Thus the factors of 18 are \[{2^1} \times {3^2}\].
We will find the factors of 36 by using the method of prime factorization.
We can see that 36 is an even number, so dividing it by the least prime number 2. Therefore, we get
\[36 \div 2 = 18\]
We can see that 18 is an even number, so dividing it by 2 again. Therefore, we get
\[18 \div 2 = 9\]
Now we will divide 9 by the next least prime number 3, we get
\[9 \div 3 = 3\]
Now as we have obtained our quotient as prime number, we will not factorize it further.
Thus the factors of 36 are \[{2^2} \times {3^2}\].
Now, we will find the LCM from these factors.
The LCM of these factors would be the highest exponent of the prime factors.
LCM of 81, 18, 36 \[ = {3^4} \times {2^2}\]
Applying the exponent on the terms, we get
\[ \Rightarrow \] LCM of 81, 18, 36 \[ = 81 \times 4\]
Multiplying the terms, we get
\[ \Rightarrow \] LCM of 81, 18, 36 \[ = 324\]
Therefore, the LCM of 81, 18, 36 is 324.
Thus, option (C) is the correct answer.
Note:
We know that the Least Common Multiple of the numbers is the smallest number that is divisible by all the numbers. LCM is the highest exponent of the prime factors. So, we will find the factors to find the LCM of numbers. Prime factorization is a method of writing the factors in terms of the power of prime numbers. Common Factor is the factor that is common to all the numbers whereas the prime factors are the factors, which is the product of the powers of the prime numbers.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the editor of a newspaper on reckless class 6 english CBSE
The planet nearest to earth is A Mercury B Venus C class 6 social science CBSE
Number of Prime between 1 to 100 is class 6 maths CBSE
How many millions make a billion class 6 maths CBSE
How many time zones are in China class 6 social science CBSE