Answer
Verified
397.8k+ views
Hint: To find the value of $\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)$ , we have to apply the formulas $\cot x=\dfrac{\cos x}{\sin x},\csc x=\dfrac{1}{\sin x},\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$ in this expression. Then, we have to simplify and use the trigonometric and algebraic formulas including ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ , ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ and ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ . Then, we have to simplify the expression.
Complete step by step solution:
We have to find the value of $\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)$ . We know that $\cot x=\dfrac{\cos x}{\sin x},\csc x=\dfrac{1}{\sin x},\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$ . Let us substitute these results in the given trigonometric expression.
$\Rightarrow \left( 1+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( 1+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right)$
Let us take the LCM of the terms inside each bracket.
$\begin{align}
& \Rightarrow \left( \dfrac{1\times \sin x}{1\times \sin x}+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( \dfrac{1\times \cos x}{1\times \cos x}+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right) \\
& =\left( \dfrac{\sin x}{\sin x}+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( \dfrac{\cos x}{\cos x}+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right) \\
\end{align}$
Let us add the terms inside the brackets.
$\Rightarrow \left( \dfrac{\sin x+\cos x-1}{\sin x} \right)\left( \dfrac{\cos x+\sin x+1}{\cos x} \right)$
We have to multiply the brackets.
$\Rightarrow \dfrac{\left( \sin x+\cos x-1 \right)\left( \cos x+\sin x+1 \right)}{\sin x\cos x}$
We can rearrange the terms inside the second bracket of the numerator as shown below.
$\Rightarrow \dfrac{\left( \sin x+\cos x-1 \right)\left( \sin x+\cos x+1 \right)}{\sin x\cos x}$
Let us group the terms as shown below.
$\Rightarrow \dfrac{\left( \left( \sin x+\cos x \right)-1 \right)\left( \left( \sin x+\cos x \right)+1 \right)}{\sin x\cos x}$
We can see that the numerator is of the form ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ . Therefore, we can write the above equation as
$\begin{align}
& \Rightarrow \dfrac{{{\left( \sin x+\cos x \right)}^{2}}-{{1}^{2}}}{\sin x\cos x} \\
& =\dfrac{{{\left( \sin x+\cos x \right)}^{2}}-1}{\sin x\cos x} \\
\end{align}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ . Therefore, the above equation becomes
$\Rightarrow \dfrac{{{\sin }^{2}}x+2\sin x\cos x+{{\cos }^{2}}x-1}{\sin x\cos x}$
We can rearrange the numerator of the above expression as
$\Rightarrow \dfrac{{{\sin }^{2}}x+{{\cos }^{2}}x-1+2\sin x\cos x}{\sin x\cos x}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ . Therefore, the above expression becomes
$\begin{align}
& \Rightarrow \dfrac{1-1+2\sin x\cos x}{\sin x\cos x} \\
& =\dfrac{0+2\sin x\cos x}{\sin x\cos x} \\
& =\dfrac{2\sin x\cos x}{\sin x\cos x} \\
\end{align}$
We can cancel $\sin x\cos x$ from the numerator and denominator.
$\Rightarrow \dfrac{2\require{cancel}\cancel{\sin x\cos x}}{\require{cancel}\cancel{\sin x\cos x}}$
We can write the result of the above simplification as
$\Rightarrow 2$
Hence, $\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)=2$ .
So, the correct answer is “Option b”.
Note: Students must be thorough with the formulas of trigonometric functions. They have a chance of making a mistake by writing the formula for $\csc x$ as $\dfrac{1}{\cos x}$ and $\sec x$ as $\dfrac{1}{\sin x}$ . Also, students may be get confused with the formula ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ by writing the value of ${{\sin }^{2}}x+{{\cos }^{2}}x$ as -1. They must also be thorough with algebraic identities.
Complete step by step solution:
We have to find the value of $\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)$ . We know that $\cot x=\dfrac{\cos x}{\sin x},\csc x=\dfrac{1}{\sin x},\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$ . Let us substitute these results in the given trigonometric expression.
$\Rightarrow \left( 1+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( 1+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right)$
Let us take the LCM of the terms inside each bracket.
$\begin{align}
& \Rightarrow \left( \dfrac{1\times \sin x}{1\times \sin x}+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( \dfrac{1\times \cos x}{1\times \cos x}+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right) \\
& =\left( \dfrac{\sin x}{\sin x}+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( \dfrac{\cos x}{\cos x}+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right) \\
\end{align}$
Let us add the terms inside the brackets.
$\Rightarrow \left( \dfrac{\sin x+\cos x-1}{\sin x} \right)\left( \dfrac{\cos x+\sin x+1}{\cos x} \right)$
We have to multiply the brackets.
$\Rightarrow \dfrac{\left( \sin x+\cos x-1 \right)\left( \cos x+\sin x+1 \right)}{\sin x\cos x}$
We can rearrange the terms inside the second bracket of the numerator as shown below.
$\Rightarrow \dfrac{\left( \sin x+\cos x-1 \right)\left( \sin x+\cos x+1 \right)}{\sin x\cos x}$
Let us group the terms as shown below.
$\Rightarrow \dfrac{\left( \left( \sin x+\cos x \right)-1 \right)\left( \left( \sin x+\cos x \right)+1 \right)}{\sin x\cos x}$
We can see that the numerator is of the form ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ . Therefore, we can write the above equation as
$\begin{align}
& \Rightarrow \dfrac{{{\left( \sin x+\cos x \right)}^{2}}-{{1}^{2}}}{\sin x\cos x} \\
& =\dfrac{{{\left( \sin x+\cos x \right)}^{2}}-1}{\sin x\cos x} \\
\end{align}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ . Therefore, the above equation becomes
$\Rightarrow \dfrac{{{\sin }^{2}}x+2\sin x\cos x+{{\cos }^{2}}x-1}{\sin x\cos x}$
We can rearrange the numerator of the above expression as
$\Rightarrow \dfrac{{{\sin }^{2}}x+{{\cos }^{2}}x-1+2\sin x\cos x}{\sin x\cos x}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ . Therefore, the above expression becomes
$\begin{align}
& \Rightarrow \dfrac{1-1+2\sin x\cos x}{\sin x\cos x} \\
& =\dfrac{0+2\sin x\cos x}{\sin x\cos x} \\
& =\dfrac{2\sin x\cos x}{\sin x\cos x} \\
\end{align}$
We can cancel $\sin x\cos x$ from the numerator and denominator.
$\Rightarrow \dfrac{2\require{cancel}\cancel{\sin x\cos x}}{\require{cancel}\cancel{\sin x\cos x}}$
We can write the result of the above simplification as
$\Rightarrow 2$
Hence, $\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)=2$ .
So, the correct answer is “Option b”.
Note: Students must be thorough with the formulas of trigonometric functions. They have a chance of making a mistake by writing the formula for $\csc x$ as $\dfrac{1}{\cos x}$ and $\sec x$ as $\dfrac{1}{\sin x}$ . Also, students may be get confused with the formula ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ by writing the value of ${{\sin }^{2}}x+{{\cos }^{2}}x$ as -1. They must also be thorough with algebraic identities.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE