
What is $\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)$ equal to?
(a) 1
(b) 2
(c) $\sin x$
(d) $\cos x$
Answer
506.7k+ views
Hint: To find the value of $\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)$ , we have to apply the formulas $\cot x=\dfrac{\cos x}{\sin x},\csc x=\dfrac{1}{\sin x},\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$ in this expression. Then, we have to simplify and use the trigonometric and algebraic formulas including ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ , ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ and ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ . Then, we have to simplify the expression.
Complete step by step solution:
We have to find the value of $\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)$ . We know that $\cot x=\dfrac{\cos x}{\sin x},\csc x=\dfrac{1}{\sin x},\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$ . Let us substitute these results in the given trigonometric expression.
$\Rightarrow \left( 1+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( 1+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right)$
Let us take the LCM of the terms inside each bracket.
$\begin{align}
& \Rightarrow \left( \dfrac{1\times \sin x}{1\times \sin x}+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( \dfrac{1\times \cos x}{1\times \cos x}+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right) \\
& =\left( \dfrac{\sin x}{\sin x}+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( \dfrac{\cos x}{\cos x}+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right) \\
\end{align}$
Let us add the terms inside the brackets.
$\Rightarrow \left( \dfrac{\sin x+\cos x-1}{\sin x} \right)\left( \dfrac{\cos x+\sin x+1}{\cos x} \right)$
We have to multiply the brackets.
$\Rightarrow \dfrac{\left( \sin x+\cos x-1 \right)\left( \cos x+\sin x+1 \right)}{\sin x\cos x}$
We can rearrange the terms inside the second bracket of the numerator as shown below.
$\Rightarrow \dfrac{\left( \sin x+\cos x-1 \right)\left( \sin x+\cos x+1 \right)}{\sin x\cos x}$
Let us group the terms as shown below.
$\Rightarrow \dfrac{\left( \left( \sin x+\cos x \right)-1 \right)\left( \left( \sin x+\cos x \right)+1 \right)}{\sin x\cos x}$
We can see that the numerator is of the form ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ . Therefore, we can write the above equation as
$\begin{align}
& \Rightarrow \dfrac{{{\left( \sin x+\cos x \right)}^{2}}-{{1}^{2}}}{\sin x\cos x} \\
& =\dfrac{{{\left( \sin x+\cos x \right)}^{2}}-1}{\sin x\cos x} \\
\end{align}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ . Therefore, the above equation becomes
$\Rightarrow \dfrac{{{\sin }^{2}}x+2\sin x\cos x+{{\cos }^{2}}x-1}{\sin x\cos x}$
We can rearrange the numerator of the above expression as
$\Rightarrow \dfrac{{{\sin }^{2}}x+{{\cos }^{2}}x-1+2\sin x\cos x}{\sin x\cos x}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ . Therefore, the above expression becomes
$\begin{align}
& \Rightarrow \dfrac{1-1+2\sin x\cos x}{\sin x\cos x} \\
& =\dfrac{0+2\sin x\cos x}{\sin x\cos x} \\
& =\dfrac{2\sin x\cos x}{\sin x\cos x} \\
\end{align}$
We can cancel $\sin x\cos x$ from the numerator and denominator.
$\Rightarrow \dfrac{2\require{cancel}\cancel{\sin x\cos x}}{\require{cancel}\cancel{\sin x\cos x}}$
We can write the result of the above simplification as
$\Rightarrow 2$
Hence, $\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)=2$ .
So, the correct answer is “Option b”.
Note: Students must be thorough with the formulas of trigonometric functions. They have a chance of making a mistake by writing the formula for $\csc x$ as $\dfrac{1}{\cos x}$ and $\sec x$ as $\dfrac{1}{\sin x}$ . Also, students may be get confused with the formula ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ by writing the value of ${{\sin }^{2}}x+{{\cos }^{2}}x$ as -1. They must also be thorough with algebraic identities.
Complete step by step solution:
We have to find the value of $\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)$ . We know that $\cot x=\dfrac{\cos x}{\sin x},\csc x=\dfrac{1}{\sin x},\tan x=\dfrac{\sin x}{\cos x}$ and $\sec x=\dfrac{1}{\cos x}$ . Let us substitute these results in the given trigonometric expression.
$\Rightarrow \left( 1+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( 1+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right)$
Let us take the LCM of the terms inside each bracket.
$\begin{align}
& \Rightarrow \left( \dfrac{1\times \sin x}{1\times \sin x}+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( \dfrac{1\times \cos x}{1\times \cos x}+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right) \\
& =\left( \dfrac{\sin x}{\sin x}+\dfrac{\cos x}{\sin x}-\dfrac{1}{\sin x} \right)\left( \dfrac{\cos x}{\cos x}+\dfrac{\sin x}{\cos x}+\dfrac{1}{\cos x} \right) \\
\end{align}$
Let us add the terms inside the brackets.
$\Rightarrow \left( \dfrac{\sin x+\cos x-1}{\sin x} \right)\left( \dfrac{\cos x+\sin x+1}{\cos x} \right)$
We have to multiply the brackets.
$\Rightarrow \dfrac{\left( \sin x+\cos x-1 \right)\left( \cos x+\sin x+1 \right)}{\sin x\cos x}$
We can rearrange the terms inside the second bracket of the numerator as shown below.
$\Rightarrow \dfrac{\left( \sin x+\cos x-1 \right)\left( \sin x+\cos x+1 \right)}{\sin x\cos x}$
Let us group the terms as shown below.
$\Rightarrow \dfrac{\left( \left( \sin x+\cos x \right)-1 \right)\left( \left( \sin x+\cos x \right)+1 \right)}{\sin x\cos x}$
We can see that the numerator is of the form ${{a}^{2}}-{{b}^{2}}=\left( a+b \right)\left( a-b \right)$ . Therefore, we can write the above equation as
$\begin{align}
& \Rightarrow \dfrac{{{\left( \sin x+\cos x \right)}^{2}}-{{1}^{2}}}{\sin x\cos x} \\
& =\dfrac{{{\left( \sin x+\cos x \right)}^{2}}-1}{\sin x\cos x} \\
\end{align}$
We know that ${{\left( a+b \right)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}$ . Therefore, the above equation becomes
$\Rightarrow \dfrac{{{\sin }^{2}}x+2\sin x\cos x+{{\cos }^{2}}x-1}{\sin x\cos x}$
We can rearrange the numerator of the above expression as
$\Rightarrow \dfrac{{{\sin }^{2}}x+{{\cos }^{2}}x-1+2\sin x\cos x}{\sin x\cos x}$
We know that ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ . Therefore, the above expression becomes
$\begin{align}
& \Rightarrow \dfrac{1-1+2\sin x\cos x}{\sin x\cos x} \\
& =\dfrac{0+2\sin x\cos x}{\sin x\cos x} \\
& =\dfrac{2\sin x\cos x}{\sin x\cos x} \\
\end{align}$
We can cancel $\sin x\cos x$ from the numerator and denominator.
$\Rightarrow \dfrac{2\require{cancel}\cancel{\sin x\cos x}}{\require{cancel}\cancel{\sin x\cos x}}$
We can write the result of the above simplification as
$\Rightarrow 2$
Hence, $\left( 1+\cot x-\csc x \right)\left( 1+\tan x+\sec x \right)=2$ .
So, the correct answer is “Option b”.
Note: Students must be thorough with the formulas of trigonometric functions. They have a chance of making a mistake by writing the formula for $\csc x$ as $\dfrac{1}{\cos x}$ and $\sec x$ as $\dfrac{1}{\sin x}$ . Also, students may be get confused with the formula ${{\sin }^{2}}x+{{\cos }^{2}}x=1$ by writing the value of ${{\sin }^{2}}x+{{\cos }^{2}}x$ as -1. They must also be thorough with algebraic identities.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Explain zero factorial class 11 maths CBSE

What is boron A Nonmetal B Metal C Metalloid D All class 11 chemistry CBSE

Bond order ofO2 O2+ O2 and O22 is in order A O2 langle class 11 chemistry CBSE

Distinguish between verbal and nonverbal communica class 11 english CBSE

