Answer
Verified
502.5k+ views
Hint:Area of the triangle is half multiplied by its perpendicular times base.
Pictorial representation of given problem is shown above
Let, AD is perpendicular to BC.
So, the area of the triangle is half multiply by its perpendicular times base
$ = \dfrac{1}{2}\left( {AD} \right)\left( {BC} \right) = \dfrac{1}{2}\left( {AD} \right)\left( 6 \right) = 3AD$
Now in triangle ABD
$
\sin 50^\circ = \dfrac{{AD}}{{AB}} = \dfrac{{AD}}{5} \\
\Rightarrow AD = 5\sin 50^\circ = 5 \times 0.77 = 3.85cm \\
$
Therefore area of triangle is
Area$ = 3AD = 3 \times 3.85 = 11.55c{m^2}$
Now in triangle ABD
$
\tan 50^\circ = \dfrac{{AD}}{{BD}} = \dfrac{{3.85}}{{BD}} \\
\Rightarrow BD = \dfrac{{3.85}}{{\tan 50^\circ }} = \dfrac{{3.85}}{{1.19}} = 3.235cm \\
\Rightarrow DC = BC - BD = 6 - 3.235 = 2.765cm \\
$
Now in triangle ADC
Apply Pythagoras Theorem
$
\Rightarrow {\left( {AC} \right)^2} = {\left( {AD} \right)^2} + {\left( {DC} \right)^2} \\
\Rightarrow {\left( {AC} \right)^2} = {\left( {3.85} \right)^2} + {\left( {2.765} \right)^2} = 22.4677 \\
\Rightarrow AC = \sqrt {22.4677} cm \\
$
So, the area of the triangle is $11.55c{m^2}$and the length of third side is$\sqrt {22.4677} cm$
Note: - In such types of problems always draw the pictorial representation of the given problem, then calculate the perpendicular distance, then calculate the area of triangle using the formula which is stated above, then calculate its third side using Pythagoras Theorem, then we will get the required answer.
Pictorial representation of given problem is shown above
Let, AD is perpendicular to BC.
So, the area of the triangle is half multiply by its perpendicular times base
$ = \dfrac{1}{2}\left( {AD} \right)\left( {BC} \right) = \dfrac{1}{2}\left( {AD} \right)\left( 6 \right) = 3AD$
Now in triangle ABD
$
\sin 50^\circ = \dfrac{{AD}}{{AB}} = \dfrac{{AD}}{5} \\
\Rightarrow AD = 5\sin 50^\circ = 5 \times 0.77 = 3.85cm \\
$
Therefore area of triangle is
Area$ = 3AD = 3 \times 3.85 = 11.55c{m^2}$
Now in triangle ABD
$
\tan 50^\circ = \dfrac{{AD}}{{BD}} = \dfrac{{3.85}}{{BD}} \\
\Rightarrow BD = \dfrac{{3.85}}{{\tan 50^\circ }} = \dfrac{{3.85}}{{1.19}} = 3.235cm \\
\Rightarrow DC = BC - BD = 6 - 3.235 = 2.765cm \\
$
Now in triangle ADC
Apply Pythagoras Theorem
$
\Rightarrow {\left( {AC} \right)^2} = {\left( {AD} \right)^2} + {\left( {DC} \right)^2} \\
\Rightarrow {\left( {AC} \right)^2} = {\left( {3.85} \right)^2} + {\left( {2.765} \right)^2} = 22.4677 \\
\Rightarrow AC = \sqrt {22.4677} cm \\
$
So, the area of the triangle is $11.55c{m^2}$and the length of third side is$\sqrt {22.4677} cm$
Note: - In such types of problems always draw the pictorial representation of the given problem, then calculate the perpendicular distance, then calculate the area of triangle using the formula which is stated above, then calculate its third side using Pythagoras Theorem, then we will get the required answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE