Answer
Verified
460.8k+ views
Hint:-In case of thin lenses the power of the combination of lenses are added algebraically & power is equal to 1/focal length of the lens. Find the focal – length and then use the lens formula \[\dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}\] to get the image distance.
Complete step-by-step solution:
Power of a lens is \[P = \dfrac{1}{{focal\;length}}\]
\[ \Rightarrow P = \dfrac{1}{f}m = \dfrac{{100}}{f}cm\]
Also power of combination of two lenses can be added algebraically as \[P = {P_1} + {P_2}\].
\[{P_1} = 3D\]& \[{P_2} = - 5D\]
Power of the combination of two lenses is
\[ \Rightarrow P = 3D - 5D = - 2D\]
Putting the value in the formula
\[ \Rightarrow P = \dfrac{1}{f}m = \dfrac{{100}}{f}cm\]
\[ \Rightarrow P = \dfrac{{100}}{f}cm = - 2D\]
Simplifying for the focal-length , we get
\[ \Rightarrow f = \dfrac{{100}}{{ - 2}} = - 50cm\]
Focal- length of the combination of lenses is -50cm.
Using the lens formula for the combination
\[ \Rightarrow \dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}\]
where \[v\] is the image distance , \[u\]is the object distance & \[f\]is the focal-length.
Putting the value \[f = - 50cm\;\& \;u = - 50cm\] in the lens formula we get
\[ \Rightarrow \dfrac{1}{v} - \dfrac{1}{{( - 50)}} = \dfrac{1}{{( - 50)}}\]
\[ \Rightarrow \dfrac{1}{v} + \dfrac{1}{{50}} = - \dfrac{1}{{50}}\]
Further simplifying the relation
\[ \Rightarrow \dfrac{1}{v} = - \dfrac{1}{{50}} - \dfrac{1}{{50}} = - \dfrac{2}{{50}}cm\]
\[ \Rightarrow - 2v = 50cm\]
Equating it with the image distance
\[ \Rightarrow v = - 25cm\]
The image is formed at 25 cm in-front of the combination of thin lenses.
Hence option ( C ) is the correct answer.
Note:- A lens has two principal focal lengths which may differ because light can fall on either surface of the lens. The two principal focal lengths are different when medium on two sides have different refractive indices.
If the lower half of a lens is covered with a black paper , the full image of the object is formed because every portion of the lens forms the full image of the object , however the sharpness of the image decreases.
Complete step-by-step solution:
Power of a lens is \[P = \dfrac{1}{{focal\;length}}\]
\[ \Rightarrow P = \dfrac{1}{f}m = \dfrac{{100}}{f}cm\]
Also power of combination of two lenses can be added algebraically as \[P = {P_1} + {P_2}\].
\[{P_1} = 3D\]& \[{P_2} = - 5D\]
Power of the combination of two lenses is
\[ \Rightarrow P = 3D - 5D = - 2D\]
Putting the value in the formula
\[ \Rightarrow P = \dfrac{1}{f}m = \dfrac{{100}}{f}cm\]
\[ \Rightarrow P = \dfrac{{100}}{f}cm = - 2D\]
Simplifying for the focal-length , we get
\[ \Rightarrow f = \dfrac{{100}}{{ - 2}} = - 50cm\]
Focal- length of the combination of lenses is -50cm.
Using the lens formula for the combination
\[ \Rightarrow \dfrac{1}{v} - \dfrac{1}{u} = \dfrac{1}{f}\]
where \[v\] is the image distance , \[u\]is the object distance & \[f\]is the focal-length.
Putting the value \[f = - 50cm\;\& \;u = - 50cm\] in the lens formula we get
\[ \Rightarrow \dfrac{1}{v} - \dfrac{1}{{( - 50)}} = \dfrac{1}{{( - 50)}}\]
\[ \Rightarrow \dfrac{1}{v} + \dfrac{1}{{50}} = - \dfrac{1}{{50}}\]
Further simplifying the relation
\[ \Rightarrow \dfrac{1}{v} = - \dfrac{1}{{50}} - \dfrac{1}{{50}} = - \dfrac{2}{{50}}cm\]
\[ \Rightarrow - 2v = 50cm\]
Equating it with the image distance
\[ \Rightarrow v = - 25cm\]
The image is formed at 25 cm in-front of the combination of thin lenses.
Hence option ( C ) is the correct answer.
Note:- A lens has two principal focal lengths which may differ because light can fall on either surface of the lens. The two principal focal lengths are different when medium on two sides have different refractive indices.
If the lower half of a lens is covered with a black paper , the full image of the object is formed because every portion of the lens forms the full image of the object , however the sharpness of the image decreases.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE