Answer
Verified
397.2k+ views
Hint: The maximum value of any function is denoted at the values of variables x, y and z which makes the value of the function the highest value among all possible values of x, y and z.
The values of function to the left of maximum are rising while at the right, its values are falling.
Complete step by step solution:
It is given that a = $2x+3y+4z=9$. The maximum value of function, b = ${{(1+x)}^{2}}{{(2+y)}^{3}}{{(4+z)}^{4}}$ is to be determined.
As functions a and b are related in terms of powers and bases, it can be said that
$\Delta b=\lambda \Delta a$
$\lambda $ is an arbitrary value.
Δb is determined as:
$
b={{(1+x)}^{2}}{{(2+y)}^{3}}{{(4+z)}^{4}} \\
\Delta b=\dfrac{db}{dx},\dfrac{db}{dy},\dfrac{db}{dz} \\
\Delta b = 2(1+x){{(2+y)}^{3}}{{(4+z)}^{4}},3{{(1+x)}^{2}}{{(2+y)}^{2}}{{(4+z)}^{4}},4{{(1+x)}^{3}}{{(2+y)}^{3}}{{(4+z)}^{3}}
$
Δa is determined as:
$
a=2x+3y+4z \\
\Delta a=\dfrac{da}{dx},\dfrac{da}{dy},\dfrac{da}{dz} \\
\Delta a=2,3,4
$
By putting values of Δb and Δa in above relation,
$\begin{align}
& \Delta b=\lambda \Delta a \\
& \left[ 2(1+x){{(2+y)}^{3}}{{(4+z)}^{4}},3{{(1+x)}^{2}}{{(2+y)}^{2}}{{(4+z)}^{4}},4{{(1+x)}^{3}}{{(2+y)}^{3}}{{(4+z)}^{3}} \right]=\lambda [2,3,4] \\
\end{align}$
On comparing,
$\begin{align}
& \left[ 2(1+x){{(2+y)}^{3}}{{(4+z)}^{4}} \right]=\lambda \times 2 \\
& (1+x){{(2+y)}^{3}}{{(4+z)}^{4}}=\lambda \text{ -eq(1)}
\end{align}$
$\begin{align}
& 3{{(1+x)}^{2}}{{(2+y)}^{2}}{{(4+z)}^{4}}=\lambda \times 3 \\
& {{(1+x)}^{2}}{{(2+y)}^{2}}{{(4+z)}^{4}}=\lambda \text{ -eq(2)}
\end{align}$
$\begin{align}
& 4{{(1+x)}^{3}}{{(2+y)}^{3}}{{(4+z)}^{3}}=\lambda \times 4 \\
& {{(1+x)}^{3}}{{(2+y)}^{3}}{{(4+z)}^{3}}=\lambda \text{ -eq(3)}
\end{align}$
Solving three equations gives,
x = \[\dfrac{8}{3}\] , y = \[\dfrac{5}{3}\], z = \[\dfrac{-1}{3}\].
Maximum value of function b is calculated by putting the determined values of x, y and z at which function b is maximized.
Maximized value of function b = ${{(1+x)}^{2}}{{(2+y)}^{3}}{{(4+z)}^{4}}$ at x = \[\dfrac{8}{3}\] , y = \[\dfrac{5}{3}\], z = \[\dfrac{-1}{3}\]
Maximized value = ${{\left( 1+\dfrac{8}{3} \right)}^{2}}{{\left( 2+\dfrac{5}{3} \right)}^{3}}{{\left( 4+\dfrac{\left( -1 \right)}{3} \right)}^{4}}$ = ${{\left( \dfrac{11}{3} \right)}^{2}}{{\left( \dfrac{11}{3} \right)}^{3}}{{\left( \dfrac{11}{3} \right)}^{4}}={{\left( \dfrac{11}{3} \right)}^{2+3+4}}={{\left( \dfrac{11}{3} \right)}^{9}}$
This indicates that option $(3)$ is correct.
Note:
Maximum value of function is calculated by taking a derivative so as to find the number below which the value of function is rising and after which the value of function is falling.
Maximized function has a peak as is the peak of a mountain. Firstly, it rises, reaches the maximum and then falls.
The values of function to the left of maximum are rising while at the right, its values are falling.
Complete step by step solution:
It is given that a = $2x+3y+4z=9$. The maximum value of function, b = ${{(1+x)}^{2}}{{(2+y)}^{3}}{{(4+z)}^{4}}$ is to be determined.
As functions a and b are related in terms of powers and bases, it can be said that
$\Delta b=\lambda \Delta a$
$\lambda $ is an arbitrary value.
Δb is determined as:
$
b={{(1+x)}^{2}}{{(2+y)}^{3}}{{(4+z)}^{4}} \\
\Delta b=\dfrac{db}{dx},\dfrac{db}{dy},\dfrac{db}{dz} \\
\Delta b = 2(1+x){{(2+y)}^{3}}{{(4+z)}^{4}},3{{(1+x)}^{2}}{{(2+y)}^{2}}{{(4+z)}^{4}},4{{(1+x)}^{3}}{{(2+y)}^{3}}{{(4+z)}^{3}}
$
Δa is determined as:
$
a=2x+3y+4z \\
\Delta a=\dfrac{da}{dx},\dfrac{da}{dy},\dfrac{da}{dz} \\
\Delta a=2,3,4
$
By putting values of Δb and Δa in above relation,
$\begin{align}
& \Delta b=\lambda \Delta a \\
& \left[ 2(1+x){{(2+y)}^{3}}{{(4+z)}^{4}},3{{(1+x)}^{2}}{{(2+y)}^{2}}{{(4+z)}^{4}},4{{(1+x)}^{3}}{{(2+y)}^{3}}{{(4+z)}^{3}} \right]=\lambda [2,3,4] \\
\end{align}$
On comparing,
$\begin{align}
& \left[ 2(1+x){{(2+y)}^{3}}{{(4+z)}^{4}} \right]=\lambda \times 2 \\
& (1+x){{(2+y)}^{3}}{{(4+z)}^{4}}=\lambda \text{ -eq(1)}
\end{align}$
$\begin{align}
& 3{{(1+x)}^{2}}{{(2+y)}^{2}}{{(4+z)}^{4}}=\lambda \times 3 \\
& {{(1+x)}^{2}}{{(2+y)}^{2}}{{(4+z)}^{4}}=\lambda \text{ -eq(2)}
\end{align}$
$\begin{align}
& 4{{(1+x)}^{3}}{{(2+y)}^{3}}{{(4+z)}^{3}}=\lambda \times 4 \\
& {{(1+x)}^{3}}{{(2+y)}^{3}}{{(4+z)}^{3}}=\lambda \text{ -eq(3)}
\end{align}$
Solving three equations gives,
x = \[\dfrac{8}{3}\] , y = \[\dfrac{5}{3}\], z = \[\dfrac{-1}{3}\].
Maximum value of function b is calculated by putting the determined values of x, y and z at which function b is maximized.
Maximized value of function b = ${{(1+x)}^{2}}{{(2+y)}^{3}}{{(4+z)}^{4}}$ at x = \[\dfrac{8}{3}\] , y = \[\dfrac{5}{3}\], z = \[\dfrac{-1}{3}\]
Maximized value = ${{\left( 1+\dfrac{8}{3} \right)}^{2}}{{\left( 2+\dfrac{5}{3} \right)}^{3}}{{\left( 4+\dfrac{\left( -1 \right)}{3} \right)}^{4}}$ = ${{\left( \dfrac{11}{3} \right)}^{2}}{{\left( \dfrac{11}{3} \right)}^{3}}{{\left( \dfrac{11}{3} \right)}^{4}}={{\left( \dfrac{11}{3} \right)}^{2+3+4}}={{\left( \dfrac{11}{3} \right)}^{9}}$
This indicates that option $(3)$ is correct.
Note:
Maximum value of function is calculated by taking a derivative so as to find the number below which the value of function is rising and after which the value of function is falling.
Maximized function has a peak as is the peak of a mountain. Firstly, it rises, reaches the maximum and then falls.
Recently Updated Pages
A very dilute acidic solution of Cd2+ and Ni2+ gives class 12 chem sec 1 JEE_Main
Calculate the equivalent resistance between A and class 12 physics JEE_Main
The potential difference between points A and B in class 12 physics JEE_Main
A wire is bent in the form of a triangle now the equivalent class 12 physics NEET_UG
For the circuit shown in figure the equivalent capacitance class 12 physics JEE_Main
If on applying the potential of 20 V on a conductor class 12 physics JEE_Main
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE