
Let $A$ and $B$ be two sets such that$n\left( A \right) = 20,n\left( {A \cup B} \right) = 42$ and $n\left( {A \cap B} \right) = 4$:
Find $n\left( {B - A} \right)$.
Answer
621.6k+ views
Hint: In this question we have been given with two sets A and B and the values of some set operations are given, using these values we are supposed to find the number of elements that are in B but not in A, we can simply use the formula of intersection to obtain the elements in set B and then subtracting that with the intersection will give us the answer.
Note: While solving these questions, it is very important to apply the correct formula to obtain the answer. In this question, we used the formula of intersection first to obtain the elements in B and then subtracted with the intersection to get the answer.
Complete step by step answer:
It is already given that,
$n\left( A \right) = 20$,
$n\left( {A \cup B} \right) = 42$
And,
$n\left( {A \cap B} \right) = 4$
Using the formula,
$n\left( B \right) = n\left( {A \cup B} \right) + n\left( {A \cap B} \right) - n\left( A \right)$
Therefore, on putting the values in the formula, we get,
$n\left( B \right) = 42 + 4 - 20$
$n\left( B \right) = 26$
$n\left( {B - A} \right) = n\left( B \right) - n\left( {A \cap B} \right)$
$n\left( {B - A} \right) = 26 - 4$
$n\left( {B - A} \right) = 22$
It is already given that,
$n\left( A \right) = 20$,
$n\left( {A \cup B} \right) = 42$
And,
$n\left( {A \cap B} \right) = 4$
Using the formula,
$n\left( B \right) = n\left( {A \cup B} \right) + n\left( {A \cap B} \right) - n\left( A \right)$
Therefore, on putting the values in the formula, we get,
$n\left( B \right) = 42 + 4 - 20$
$n\left( B \right) = 26$
$n\left( {B - A} \right) = n\left( B \right) - n\left( {A \cap B} \right)$
$n\left( {B - A} \right) = 26 - 4$
$n\left( {B - A} \right) = 22$
Note: While solving these questions, it is very important to apply the correct formula to obtain the answer. In this question, we used the formula of intersection first to obtain the elements in B and then subtracted with the intersection to get the answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

