Answer
Verified
460.5k+ views
Hint: Matrix is the set of the arranged numbers. We get the transpose of the square matrix by changing the rows of the original matrix to column and columns are changed to rows. It is denoted by $ {A^T} $ . The determinant of the matrix is a special number which can be calculated from the square matrix.
Complete step-by-step answer:
Given that - $ {A^T}A = I $
Take determinate on both the sides of the above equation.
Therefore, $ \left| {{A^T}A} \right| = \left| I \right| $
Determinant of an Identity matrix is always one, irrespective of its order two, three or any.
$ \therefore \left| {{A^T}} \right| \cdot \left| A \right| = 1 $
Also, determinant of A and the determinant of the transpose of A is always same or equal, $ \therefore \left| {{A^T}} \right| = \left| A \right| $
$ \therefore \left| A \right| \cdot \left| A \right| = 1 $
Product of the two same numbers gives the square.
$ \therefore {\left| A \right|^2} = 1 $
Now take square-root on both the sides of the equation
$ \therefore \sqrt {{{\left| A \right|}^2}} = \sqrt 1 $
Square and square-root cancels each other on the left hand side of the equation and on the right hand side of the equation the square root of the number one gives us the value of plus or minus one.
$ \therefore \left| A \right| = \pm 1 $
Therefore, the required answer - When A be a square matrix such that $ {A^T}A = I $ then the value $ \left| A \right| = \pm 1 $
Note: Simply, the transpose of the matrix is the flipped version of the original matrix. It was introduced by the British Mathematician Arthur Cayley in the year 1858. Also, since the value of the numbers in the matrix remains the same, the determinant of the matrix and its transpose remains the same. Determinant can also be denoted by $\det (A),{\text{ det A or }}\left| A \right|$
Complete step-by-step answer:
Given that - $ {A^T}A = I $
Take determinate on both the sides of the above equation.
Therefore, $ \left| {{A^T}A} \right| = \left| I \right| $
Determinant of an Identity matrix is always one, irrespective of its order two, three or any.
$ \therefore \left| {{A^T}} \right| \cdot \left| A \right| = 1 $
Also, determinant of A and the determinant of the transpose of A is always same or equal, $ \therefore \left| {{A^T}} \right| = \left| A \right| $
$ \therefore \left| A \right| \cdot \left| A \right| = 1 $
Product of the two same numbers gives the square.
$ \therefore {\left| A \right|^2} = 1 $
Now take square-root on both the sides of the equation
$ \therefore \sqrt {{{\left| A \right|}^2}} = \sqrt 1 $
Square and square-root cancels each other on the left hand side of the equation and on the right hand side of the equation the square root of the number one gives us the value of plus or minus one.
$ \therefore \left| A \right| = \pm 1 $
Therefore, the required answer - When A be a square matrix such that $ {A^T}A = I $ then the value $ \left| A \right| = \pm 1 $
Note: Simply, the transpose of the matrix is the flipped version of the original matrix. It was introduced by the British Mathematician Arthur Cayley in the year 1858. Also, since the value of the numbers in the matrix remains the same, the determinant of the matrix and its transpose remains the same. Determinant can also be denoted by $\det (A),{\text{ det A or }}\left| A \right|$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE