Let a focal chord of the parabola ${{y}^{2}}=16x$ cuts it at points $\left( f,g \right)$ and $\left( h,k \right)$. Then $f.h$ is:
A. -8
B. -16
C. 16
D. None of these
Answer
Verified
463.2k+ views
Hint: We here need to find $f.h$ , i.e. the product of the x-coordinates of the extremities of the focal chord of the given parabola. For this, we will first write the given coordinates in the parametric form and, i.e. $\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right)$ and $\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)$ and hence write the product in the parametric form. Then we will use the property of ${{t}_{1}}{{t}_{2}}=-1$ where ${{t}_{1}}$ and ${{t}_{2}}$ are the parameters for the extremities of the focal chord. We will then put this value in the required product and hence we will get our result.
Complete step-by-step solution
Now, we have been given the two points the focal chord of the parabola ${{y}^{2}}=16x$ passes through. A focal chord of a parabola is the chord, which passes through its focus.
The parabola ${{y}^{2}}=16x$ is in the form of ${{y}^{2}}=4ax$ where the focus is $\left( a,0 \right)$ . thus, we can write the given parabola as:
$\begin{align}
& {{y}^{2}}=16x \\
& \Rightarrow {{y}^{2}}=4.4x \\
\end{align}$
Thus, for the given parabola, $a=4$
Now, any point on a parabola ${{y}^{2}}=4ax$ is given by $\left( a{{t}^{2}},2at \right)$ where ‘t’ is a parameter.
As mentioned above, here $a=4$
Thus, we can take the given points $\left( f,g \right)$ and $\left( h,k \right)$ as \[\left( 4{{t}_{1}}^{2},8{{t}_{1}} \right)\] and $\left( 4{{t}_{2}}^{2},8{{t}_{2}} \right)$ respectively where $'{{t}_{1}}'$ and $'{{t}_{2}}'$ are two different parameters.
Thus, we get:
$f=4{{t}_{1}}^{2}$
$h=4{{t}_{2}}^{2}$
So we can get $f.h$ as by multiplying these both.
Thus, we get:
$\begin{align}
& f.h=4{{t}_{1}}^{2}.4{{t}_{2}}^{2} \\
& \Rightarrow f.h=16{{t}_{1}}^{2}{{t}_{2}}^{2} \\
\end{align}$
$\Rightarrow f.h=16{{\left( {{t}_{1}}{{t}_{2}} \right)}^{2}}$ ……(i)
Now, we know that if the focal chord of a parabola of the type ${{y}^{2}}=4ax$ passes through the points $\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right)$ and $\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)$ then the relation between the points is given by:
${{t}_{1}}{{t}_{2}}=-1$
Thus, by putting this value, we can find the value of $f.h$
Now, putting this value in equation (i) we get:
$\begin{align}
& f.h=16{{\left( {{t}_{1}}{{t}_{2}} \right)}^{2}} \\
& \Rightarrow f.h=16{{\left( -1 \right)}^{2}} \\
& \Rightarrow f.h=16\left( 1 \right) \\
& \Rightarrow f.h=16 \\
\end{align}$
Thus option (C) is the correct option.
Note: We have obtained the result ${{t}_{1}}{{t}_{2}}=-1$ by the following method:
In the given figure, we have a parabola ${{y}^{2}}=4ax$ with the focus at S. The extremities of the chord are P and Q.
Let the point P be $\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right)$ and let the point Q be $\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)$.
Hence, the equation through point P and Q will be:
$\begin{align}
& y-2a{{t}_{1}}=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{a{{t}_{2}}^{2}-a{{t}_{1}}^{2}}\left( x-a{{t}_{1}}^{2} \right) \\
& y-2a{{t}_{1}}=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( x-a{{t}_{1}}^{2} \right) \\
\end{align}$
Now, this line passes through the focus, i.e. S (a,0)
Putting this point in the equation of the chord we get:
\[\begin{align}
& y-2a{{t}_{1}}=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( x-a{{t}_{1}}^{2} \right) \\
& \Rightarrow 0-2a{{t}_{1}}=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( a-a{{t}_{1}}^{2} \right) \\
& \Rightarrow -2a{{t}_{1}}=\dfrac{2a}{{{t}_{2}}+{{t}_{1}}}\left( 1-{{t}_{1}}^{2} \right) \\
& \Rightarrow -{{t}_{1}}=\dfrac{1-{{t}_{1}}^{2}}{{{t}_{2}}+{{t}_{1}}} \\
& \Rightarrow -{{t}_{1}}{{t}_{2}}-{{t}_{1}}^{2}=1-{{t}_{1}}^{2} \\
& \Rightarrow -{{t}_{1}}{{t}_{2}}=1-{{t}_{1}}^{2}+{{t}_{1}}^{2} \\
& \Rightarrow -{{t}_{1}}{{t}_{2}}=1 \\
& \Rightarrow {{t}_{1}}{{t}_{2}}=-1 \\
\end{align}\]
Complete step-by-step solution
Now, we have been given the two points the focal chord of the parabola ${{y}^{2}}=16x$ passes through. A focal chord of a parabola is the chord, which passes through its focus.
The parabola ${{y}^{2}}=16x$ is in the form of ${{y}^{2}}=4ax$ where the focus is $\left( a,0 \right)$ . thus, we can write the given parabola as:
$\begin{align}
& {{y}^{2}}=16x \\
& \Rightarrow {{y}^{2}}=4.4x \\
\end{align}$
Thus, for the given parabola, $a=4$
Now, any point on a parabola ${{y}^{2}}=4ax$ is given by $\left( a{{t}^{2}},2at \right)$ where ‘t’ is a parameter.
As mentioned above, here $a=4$
Thus, we can take the given points $\left( f,g \right)$ and $\left( h,k \right)$ as \[\left( 4{{t}_{1}}^{2},8{{t}_{1}} \right)\] and $\left( 4{{t}_{2}}^{2},8{{t}_{2}} \right)$ respectively where $'{{t}_{1}}'$ and $'{{t}_{2}}'$ are two different parameters.
Thus, we get:
$f=4{{t}_{1}}^{2}$
$h=4{{t}_{2}}^{2}$
So we can get $f.h$ as by multiplying these both.
Thus, we get:
$\begin{align}
& f.h=4{{t}_{1}}^{2}.4{{t}_{2}}^{2} \\
& \Rightarrow f.h=16{{t}_{1}}^{2}{{t}_{2}}^{2} \\
\end{align}$
$\Rightarrow f.h=16{{\left( {{t}_{1}}{{t}_{2}} \right)}^{2}}$ ……(i)
Now, we know that if the focal chord of a parabola of the type ${{y}^{2}}=4ax$ passes through the points $\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right)$ and $\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)$ then the relation between the points is given by:
${{t}_{1}}{{t}_{2}}=-1$
Thus, by putting this value, we can find the value of $f.h$
Now, putting this value in equation (i) we get:
$\begin{align}
& f.h=16{{\left( {{t}_{1}}{{t}_{2}} \right)}^{2}} \\
& \Rightarrow f.h=16{{\left( -1 \right)}^{2}} \\
& \Rightarrow f.h=16\left( 1 \right) \\
& \Rightarrow f.h=16 \\
\end{align}$
Thus option (C) is the correct option.
Note: We have obtained the result ${{t}_{1}}{{t}_{2}}=-1$ by the following method:
In the given figure, we have a parabola ${{y}^{2}}=4ax$ with the focus at S. The extremities of the chord are P and Q.
Let the point P be $\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right)$ and let the point Q be $\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)$.
Hence, the equation through point P and Q will be:
$\begin{align}
& y-2a{{t}_{1}}=\dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{a{{t}_{2}}^{2}-a{{t}_{1}}^{2}}\left( x-a{{t}_{1}}^{2} \right) \\
& y-2a{{t}_{1}}=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( x-a{{t}_{1}}^{2} \right) \\
\end{align}$
Now, this line passes through the focus, i.e. S (a,0)
Putting this point in the equation of the chord we get:
\[\begin{align}
& y-2a{{t}_{1}}=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( x-a{{t}_{1}}^{2} \right) \\
& \Rightarrow 0-2a{{t}_{1}}=\dfrac{2}{{{t}_{2}}+{{t}_{1}}}\left( a-a{{t}_{1}}^{2} \right) \\
& \Rightarrow -2a{{t}_{1}}=\dfrac{2a}{{{t}_{2}}+{{t}_{1}}}\left( 1-{{t}_{1}}^{2} \right) \\
& \Rightarrow -{{t}_{1}}=\dfrac{1-{{t}_{1}}^{2}}{{{t}_{2}}+{{t}_{1}}} \\
& \Rightarrow -{{t}_{1}}{{t}_{2}}-{{t}_{1}}^{2}=1-{{t}_{1}}^{2} \\
& \Rightarrow -{{t}_{1}}{{t}_{2}}=1-{{t}_{1}}^{2}+{{t}_{1}}^{2} \\
& \Rightarrow -{{t}_{1}}{{t}_{2}}=1 \\
& \Rightarrow {{t}_{1}}{{t}_{2}}=-1 \\
\end{align}\]
Recently Updated Pages
Difference Between Prokaryotic Cells and Eukaryotic Cells
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Pigmented layer in the eye is called as a Cornea b class 11 biology CBSE
The lightest gas is A nitrogen B helium C oxygen D class 11 chemistry CBSE
What is spore formation class 11 biology CBSE
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
What are the limitations of Rutherfords model of an class 11 chemistry CBSE