Answer
Verified
441.6k+ views
Hint: We are given that, we have a unit circle with a circle inscribed in a hexagon. Circle is of unit radius. We have to find length of ${{A}_{0}},{{A}_{1}},{{A}_{2}},{{A}_{3}},{{A}_{4}}\text{ and }{{A}_{5}}$. To do so we will use the circle to find the coordinate of those vertices, we use that hexagon subtend ${{60}^{\circ }}$ at the center from each side. Once we have coordinates, we will use $\cos {{60}^{\circ }}=\dfrac{1}{{2}}\text{ and }\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$ and lastly we need distance formula $\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$ to find distance. Then, at last we will find the product.
Complete step-by-step solution:
We are given that ${{A}_{0}},{{A}_{1}},{{A}_{2}},{{A}_{3}},{{A}_{4}}\text{ and }{{A}_{5}}$ are vertex of a regular hexagon that is inscribed in a circle.
Let the circle have O as center. As we are given, the circle has unit radius, so we have $O{{A}_{0}}=1$.
$O{{A}_{0}}$ is radius as ${{A}_{0}}$ lies on the circle and O is the center.
So as ${{A}_{1}},{{A}_{2}},{{A}_{3}},{{A}_{4}}\text{ and }{{A}_{5}}$ also lies on circle. So, $O{{A}_{1}},O{{A}_{2}},O{{A}_{3}},O{{A}_{4}}\text{ and O}{{A}_{5}}$ are also radius. Hence,
$O{{A}_{1}}=O{{A}_{2}}=O{{A}_{3}}=O{{A}_{4}}=\text{O}{{A}_{5}}=1$.
Now we know regular hexagon has each side equal and angle subtended by them at the center is of ${{60}^{\circ }}$ so,
Now we will have to find the coordinate of the vertex of the hexagon.
As we have to find distance of ${{A}_{0}}{{A}_{1}},{{A}_{0}}{{A}_{2}}\text{ and }{{A}_{0}}{{A}_{4}}$ so we need coordinate of ${{A}_{0}},{{A}_{1}},{{A}_{2}}\text{ and }{{A}_{4}}$.
As angle subtends by each side, so we can see that, ${{A}_{0}}=\left( 1,0 \right)$ (as radius of circle is 1).
Now, coordinate of ${{A}_{1}}=\left( \cos {{60}^{\circ }},\sin {{60}^{\circ }} \right)$.
Similarly, we have ${{A}_{2}}=\left( \cos {{120}^{\circ }},\sin {{120}^{\circ }} \right)$.
Similarly, we have ${{A}_{4}}=\left( \cos {{240}^{\circ }},\sin {{240}^{\circ }} \right)$.
Now simplifying we get,
$\begin{align}
& {{A}_{1}}=\left( \cos {{60}^{\circ }},\sin {{60}^{\circ }} \right)={{A}_{1}}\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& {{A}_{2}}=\left( \cos {{120}^{\circ }},\sin {{120}^{\circ }} \right)={{A}_{2}}\left( \dfrac{-1}{2},\dfrac{\sqrt{3}}{2} \right) \\
\end{align}$
We can write it as we know that $\cos {{120}^{\circ }}=\cos \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=-\cos {{60}^{\circ }}=-\dfrac{1}{2}$ and $\sin {{120}^{\circ }}=\sin \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$.
${{A}_{4}}=\left( \cos {{240}^{\circ }},\sin {{240}^{\circ }} \right)=\left( -\dfrac{1}{2},\dfrac{-\sqrt{3}}{2} \right)$.
We can write it as we know that $\cos {{240}^{\circ }}=\cos \left( {{180}^{\circ }}+{{60}^{\circ }} \right)=-\cos {{60}^{\circ }}=-\dfrac{1}{2}$ and $\sin {{240}^{\circ }}=\sin \left( {{180}^{\circ }}+{{60}^{\circ }} \right)=-\sin {{60}^{\circ }}=\dfrac{-\sqrt{3}}{2}$.
Now we will find the distance, we know that for points \[A\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }B\left( {{x}_{2}},{{y}_{2}} \right)\], the distance AB is given as $AB=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$.
So for
\[\begin{align}
& {{A}_{0}}\left( 1,0 \right)\text{ and }{{A}_{1}}\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& {{A}_{0}}{{A}_{1}}=\sqrt{{{\left( \dfrac{1}{2}-1 \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2}-0 \right)}^{2}}} \\
\end{align}\].
Simplifying we get \[{{A}_{0}}{{A}_{1}}=\sqrt{{{\left( -\dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}}=\sqrt{\dfrac{4}{4}}=1\].
Similarly, for
\[\begin{align}
& {{A}_{0}}\left( 1,0 \right)\text{ and }{{A}_{2}}\left( \dfrac{-1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& {{A}_{0}}{{A}_{2}}=\sqrt{{{\left( \dfrac{-1}{2}-1 \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2}-0 \right)}^{2}}} \\
\end{align}\]
Simplifying we get \[{{A}_{0}}{{A}_{2}}=\sqrt{{{\left( -\dfrac{3}{2} \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}}=\sqrt{\dfrac{9}{4}+\dfrac{3}{4}}=\sqrt{\dfrac{12}{4}}=\sqrt{3}\].
Now for
\[\begin{align}
& {{A}_{0}}\left( 1,0 \right)\text{ and }{{A}_{4}}\left( \dfrac{-1}{2},\dfrac{-\sqrt{3}}{2} \right) \\
& {{A}_{0}}{{A}_{2}}=\sqrt{{{\left( \dfrac{-1}{2}-1 \right)}^{2}}+{{\left( \dfrac{-\sqrt{3}}{2}-0 \right)}^{2}}} \\
\end{align}\]
Simplifying we get, \[{{A}_{0}}{{A}_{4}}=\sqrt{{{\left( -\dfrac{3}{2} \right)}^{2}}+{{\left( \dfrac{-\sqrt{3}}{2} \right)}^{2}}}\].
Solving we get, \[{{A}_{0}}{{A}_{4}}=\sqrt{\dfrac{9}{4}+\dfrac{3}{4}}=\sqrt{\dfrac{12}{4}}=\sqrt{3}\].
So we get \[{{A}_{0}}{{A}_{4}}=\sqrt{3}\].
Now, we are asked to find the product of ${{A}_{0}}{{A}_{1}},{{A}_{0}}{{A}_{2}}\text{ and }{{A}_{0}}{{A}_{4}}$. So, ${{A}_{0}}{{A}_{1}}\times {{A}_{0}}{{A}_{2}}\times {{A}_{0}}{{A}_{4}}=1\times \sqrt{3}\times \sqrt{3}=3$.
So the required product is 3.
Hence option C is the correct answer.
Note: While solving distance we need to be much focused. As mistakes like ${{\left( \dfrac{-3}{2} \right)}^{2}}=\dfrac{-9}{4},\dfrac{-1}{2}-1=\dfrac{-2}{2}$ may happen. Students must remember that, while doing square, sign always comes out as positive and for addition of fraction, we take LCM before adding.
Complete step-by-step solution:
We are given that ${{A}_{0}},{{A}_{1}},{{A}_{2}},{{A}_{3}},{{A}_{4}}\text{ and }{{A}_{5}}$ are vertex of a regular hexagon that is inscribed in a circle.
Let the circle have O as center. As we are given, the circle has unit radius, so we have $O{{A}_{0}}=1$.
$O{{A}_{0}}$ is radius as ${{A}_{0}}$ lies on the circle and O is the center.
So as ${{A}_{1}},{{A}_{2}},{{A}_{3}},{{A}_{4}}\text{ and }{{A}_{5}}$ also lies on circle. So, $O{{A}_{1}},O{{A}_{2}},O{{A}_{3}},O{{A}_{4}}\text{ and O}{{A}_{5}}$ are also radius. Hence,
$O{{A}_{1}}=O{{A}_{2}}=O{{A}_{3}}=O{{A}_{4}}=\text{O}{{A}_{5}}=1$.
Now we know regular hexagon has each side equal and angle subtended by them at the center is of ${{60}^{\circ }}$ so,
Now we will have to find the coordinate of the vertex of the hexagon.
As we have to find distance of ${{A}_{0}}{{A}_{1}},{{A}_{0}}{{A}_{2}}\text{ and }{{A}_{0}}{{A}_{4}}$ so we need coordinate of ${{A}_{0}},{{A}_{1}},{{A}_{2}}\text{ and }{{A}_{4}}$.
As angle subtends by each side, so we can see that, ${{A}_{0}}=\left( 1,0 \right)$ (as radius of circle is 1).
Now, coordinate of ${{A}_{1}}=\left( \cos {{60}^{\circ }},\sin {{60}^{\circ }} \right)$.
Similarly, we have ${{A}_{2}}=\left( \cos {{120}^{\circ }},\sin {{120}^{\circ }} \right)$.
Similarly, we have ${{A}_{4}}=\left( \cos {{240}^{\circ }},\sin {{240}^{\circ }} \right)$.
Now simplifying we get,
$\begin{align}
& {{A}_{1}}=\left( \cos {{60}^{\circ }},\sin {{60}^{\circ }} \right)={{A}_{1}}\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& {{A}_{2}}=\left( \cos {{120}^{\circ }},\sin {{120}^{\circ }} \right)={{A}_{2}}\left( \dfrac{-1}{2},\dfrac{\sqrt{3}}{2} \right) \\
\end{align}$
We can write it as we know that $\cos {{120}^{\circ }}=\cos \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=-\cos {{60}^{\circ }}=-\dfrac{1}{2}$ and $\sin {{120}^{\circ }}=\sin \left( {{180}^{\circ }}-{{60}^{\circ }} \right)=\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}$.
${{A}_{4}}=\left( \cos {{240}^{\circ }},\sin {{240}^{\circ }} \right)=\left( -\dfrac{1}{2},\dfrac{-\sqrt{3}}{2} \right)$.
We can write it as we know that $\cos {{240}^{\circ }}=\cos \left( {{180}^{\circ }}+{{60}^{\circ }} \right)=-\cos {{60}^{\circ }}=-\dfrac{1}{2}$ and $\sin {{240}^{\circ }}=\sin \left( {{180}^{\circ }}+{{60}^{\circ }} \right)=-\sin {{60}^{\circ }}=\dfrac{-\sqrt{3}}{2}$.
Now we will find the distance, we know that for points \[A\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }B\left( {{x}_{2}},{{y}_{2}} \right)\], the distance AB is given as $AB=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$.
So for
\[\begin{align}
& {{A}_{0}}\left( 1,0 \right)\text{ and }{{A}_{1}}\left( \dfrac{1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& {{A}_{0}}{{A}_{1}}=\sqrt{{{\left( \dfrac{1}{2}-1 \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2}-0 \right)}^{2}}} \\
\end{align}\].
Simplifying we get \[{{A}_{0}}{{A}_{1}}=\sqrt{{{\left( -\dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}}=\sqrt{\dfrac{4}{4}}=1\].
Similarly, for
\[\begin{align}
& {{A}_{0}}\left( 1,0 \right)\text{ and }{{A}_{2}}\left( \dfrac{-1}{2},\dfrac{\sqrt{3}}{2} \right) \\
& {{A}_{0}}{{A}_{2}}=\sqrt{{{\left( \dfrac{-1}{2}-1 \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2}-0 \right)}^{2}}} \\
\end{align}\]
Simplifying we get \[{{A}_{0}}{{A}_{2}}=\sqrt{{{\left( -\dfrac{3}{2} \right)}^{2}}+{{\left( \dfrac{\sqrt{3}}{2} \right)}^{2}}}=\sqrt{\dfrac{9}{4}+\dfrac{3}{4}}=\sqrt{\dfrac{12}{4}}=\sqrt{3}\].
Now for
\[\begin{align}
& {{A}_{0}}\left( 1,0 \right)\text{ and }{{A}_{4}}\left( \dfrac{-1}{2},\dfrac{-\sqrt{3}}{2} \right) \\
& {{A}_{0}}{{A}_{2}}=\sqrt{{{\left( \dfrac{-1}{2}-1 \right)}^{2}}+{{\left( \dfrac{-\sqrt{3}}{2}-0 \right)}^{2}}} \\
\end{align}\]
Simplifying we get, \[{{A}_{0}}{{A}_{4}}=\sqrt{{{\left( -\dfrac{3}{2} \right)}^{2}}+{{\left( \dfrac{-\sqrt{3}}{2} \right)}^{2}}}\].
Solving we get, \[{{A}_{0}}{{A}_{4}}=\sqrt{\dfrac{9}{4}+\dfrac{3}{4}}=\sqrt{\dfrac{12}{4}}=\sqrt{3}\].
So we get \[{{A}_{0}}{{A}_{4}}=\sqrt{3}\].
Now, we are asked to find the product of ${{A}_{0}}{{A}_{1}},{{A}_{0}}{{A}_{2}}\text{ and }{{A}_{0}}{{A}_{4}}$. So, ${{A}_{0}}{{A}_{1}}\times {{A}_{0}}{{A}_{2}}\times {{A}_{0}}{{A}_{4}}=1\times \sqrt{3}\times \sqrt{3}=3$.
So the required product is 3.
Hence option C is the correct answer.
Note: While solving distance we need to be much focused. As mistakes like ${{\left( \dfrac{-3}{2} \right)}^{2}}=\dfrac{-9}{4},\dfrac{-1}{2}-1=\dfrac{-2}{2}$ may happen. Students must remember that, while doing square, sign always comes out as positive and for addition of fraction, we take LCM before adding.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If x be real then the maximum value of 5 + 4x 4x2 will class 10 maths JEE_Main
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE