
Let A(a,0) and B(b,0) be fixed distance points on the x-axis, none of which coincides with the origin O(0,0), and let C be a point on the y-axis. Let L be a line through the O(0,0) and perpendicular to the line AC. The locus of the point of intersection of the lines L and BC if C varies along the y-axis, is (provided \[{{c}^{2}}+ab\ne 0\]).
(a) \[\dfrac{{{x}^{2}}}{a}+\dfrac{{{y}^{2}}}{b}=x\]
(b) \[\dfrac{{{x}^{2}}}{a}+\dfrac{{{y}^{2}}}{b}=y\]
(c) \[\dfrac{{{x}^{2}}}{b}+\dfrac{{{y}^{2}}}{a}=x\]
(d) \[\dfrac{{{x}^{2}}}{b}+\dfrac{{{y}^{2}}}{a}=y\]
Answer
522.6k+ views
Hint: Assume a variable point C on y axis as (0,k) and find the slope of the line AC. Using the perpendicularity condition of lines, find the slope of the line C and thus the equation of line L. Finally, substitute the expression of \[k\] that you have obtained from L on the line BC for the required locus.
Given \[A\left( a,0 \right)\]and \[B\left( b,0 \right)\] are two fixed points on x axis, let us assume the variable point C on y axis as \[\left( 0,k \right)\].
Plotting the diagram with the above data, we will have it as:
Then the slope of the line AC is given as:
\[m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\]
\[m=\dfrac{k-0}{0-a}\]
\[m=\dfrac{-k}{a}\]
Now the slope of the line perpendicular to line AC is \[\dfrac{-1}{m}\], since the product of slopes of perpendicular lines is -1.
Therefore, the equation of line L passing through origin and perpendicular to AC is given as:
\[y=\left( \dfrac{-1}{m} \right)x\]
\[y=\left( \dfrac{a}{k} \right)x\]
\[k=\dfrac{ax}{y}\]
Now the equation of line BC can be found out using \[\dfrac{x}{a}+\dfrac{y}{b}=1\](intercept form) where a and b are x-intercepts and y-intercept respectively.
Therefore, the equation of line BC is:
\[\dfrac{x}{a}+\dfrac{y}{k}=1\]
Substituting \[k=\dfrac{ax}{y}\] in the above equation we will have:
\[\dfrac{x}{b}+\dfrac{y}{\left( \dfrac{ax}{y} \right)}=1\]
\[\dfrac{x}{b}+\dfrac{{{y}^{2}}}{ax}=1\]
\[\begin{align}
& \\
& \dfrac{{{x}^{2}}}{b}+\dfrac{{{y}^{2}}}{a}=x \\
\end{align}\]
Thus, the locus of point of intersection of L and BC is given as \[\dfrac{{{x}^{2}}}{b}+\dfrac{{{y}^{2}}}{a}=x\]
Hence, option A is the correct answer.
Note: For any given two lines having slopes \[{{m}_{1}}\] and \[{{m}_{2}}\], then the condition for them to be parallel is \[{{m}_{1}}={{m}_{2}}\] and the condition to be perpendicular is \[{{m}_{1}}.{{m}_{2}}=-1\]. Also, \[\frac{x}{a}+\frac{y}{b}=1\], is the intercept form of a line where a and b are x-intercept and y-intercept respectively.
Given \[A\left( a,0 \right)\]and \[B\left( b,0 \right)\] are two fixed points on x axis, let us assume the variable point C on y axis as \[\left( 0,k \right)\].
Plotting the diagram with the above data, we will have it as:

Then the slope of the line AC is given as:
\[m=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\]
\[m=\dfrac{k-0}{0-a}\]
\[m=\dfrac{-k}{a}\]
Now the slope of the line perpendicular to line AC is \[\dfrac{-1}{m}\], since the product of slopes of perpendicular lines is -1.
Therefore, the equation of line L passing through origin and perpendicular to AC is given as:
\[y=\left( \dfrac{-1}{m} \right)x\]
\[y=\left( \dfrac{a}{k} \right)x\]
\[k=\dfrac{ax}{y}\]
Now the equation of line BC can be found out using \[\dfrac{x}{a}+\dfrac{y}{b}=1\](intercept form) where a and b are x-intercepts and y-intercept respectively.
Therefore, the equation of line BC is:
\[\dfrac{x}{a}+\dfrac{y}{k}=1\]
Substituting \[k=\dfrac{ax}{y}\] in the above equation we will have:
\[\dfrac{x}{b}+\dfrac{y}{\left( \dfrac{ax}{y} \right)}=1\]
\[\dfrac{x}{b}+\dfrac{{{y}^{2}}}{ax}=1\]
\[\begin{align}
& \\
& \dfrac{{{x}^{2}}}{b}+\dfrac{{{y}^{2}}}{a}=x \\
\end{align}\]
Thus, the locus of point of intersection of L and BC is given as \[\dfrac{{{x}^{2}}}{b}+\dfrac{{{y}^{2}}}{a}=x\]
Hence, option A is the correct answer.
Note: For any given two lines having slopes \[{{m}_{1}}\] and \[{{m}_{2}}\], then the condition for them to be parallel is \[{{m}_{1}}={{m}_{2}}\] and the condition to be perpendicular is \[{{m}_{1}}.{{m}_{2}}=-1\]. Also, \[\frac{x}{a}+\frac{y}{b}=1\], is the intercept form of a line where a and b are x-intercept and y-intercept respectively.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

How do I convert ms to kmh Give an example class 11 physics CBSE

Describe the effects of the Second World War class 11 social science CBSE

Which of the following methods is suitable for preventing class 11 chemistry CBSE
