Answer
Verified
499.2k+ views
Hint: For any function f( x,y) to be minimum , the partial derivatives of the function with respect to \[x\] and \[y\] should be equal to \[0\].
The given triangle is \[\Delta ABC\] .
Let us consider the vertices of triangle as
$A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)\text{ and C}\left( {{x}_{3}},{{y}_{3}} \right)$
Also , we will consider the coordinates of $P$ to be $\left( x,y \right)$.
Now, we will find the lengths \[PA,PB\] and \[PC\].
We know the distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right)$ is given as:
$\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
So , the length \[PA\] is given as $PA=\sqrt{{{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}}$
Now , we will square both sides to determine the value of \[P{{A}^{2}}\].
On squaring both sides , we get
${{\left( PA \right)}^{2}}=\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right).............\left( i \right)$
The length \[PB\] is given as $PB=\sqrt{{{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}}}$
Now , we will square both sides to determine the value of \[P{{B}^{2}}\].
On squaring both sides , we get
${{\left( PB \right)}^{2}}=\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right).............\left( ii \right)$
The length \[PC\] is given as $PC=\sqrt{{{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}}}$
Now , we will square both sides to determine the value of \[P{{C}^{2}}\].
On squaring both sides , we get
${{\left( PC \right)}^{2}}=\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right).............\left( iii \right)$
Now , we will find the value of $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$
Substituting $\left( i \right)$, $\left( ii \right)$ and $\left( iii \right)$ we get;
$a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}=a\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right)+b\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right)+c\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right)$ Now , we will find the condition for $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$ to be minimum .
We know for any function $f\left( x,y \right)$ to be minimum,
$\dfrac{\partial }{\partial x}f\left( x,y \right)=0$ and $\dfrac{\partial }{\partial y}f\left( x,y \right)=0$.
So , for $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$ to be minimum,
$\dfrac{\partial }{\partial x}\left( a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}} \right)=0$ and
$\dfrac{\partial }{\partial y}\left( a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}} \right)=0$
$\Rightarrow \dfrac{\partial }{\partial x}\left( a\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right)+b\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right)+c\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right) \right)=0$
$\Rightarrow 2x\left( a+b+c \right)-2\left( a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}} \right)=0$
$\Rightarrow x=\dfrac{a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{a+b+c}..............\left( iv \right)$
Again ,
$\Rightarrow \dfrac{\partial }{\partial y}\left( a\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right)+b\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right)+c\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right) \right)=0$
$\Rightarrow 2y\left( a+b+c \right)-2\left( a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}} \right)=0$
$\Rightarrow y=\left( \dfrac{a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{a+b+c} \right)..............\left( v \right)$
So , the coordinates of $P\left( x,y \right)$ are given as;
$\left( \dfrac{a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{a+b+c},\dfrac{a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{a+b+c} \right)$ (From $\left( iv \right)$ and$\left( v \right)$)
So , we can clearly see that $P$ is the incentre of $\Delta ABC$.
Option (D) - Incentre is correct answer
Note: While partially differentiating the function with respect to \[x\], remember to treat \[y\] as a constant . Similarly , while partially differentiating the function with respect to \[y\], remember to treat \[x\] as a constant . Students generally make a mistake of treating the function as an implicit function and then they apply chain rule of differentiation , which is wrong .
The given triangle is \[\Delta ABC\] .
Let us consider the vertices of triangle as
$A\left( {{x}_{1}},{{y}_{1}} \right),B\left( {{x}_{2}},{{y}_{2}} \right)\text{ and C}\left( {{x}_{3}},{{y}_{3}} \right)$
Also , we will consider the coordinates of $P$ to be $\left( x,y \right)$.
Now, we will find the lengths \[PA,PB\] and \[PC\].
We know the distance between two points $\left( {{x}_{1}},{{y}_{1}} \right)\text{ and }\left( {{x}_{2}},{{y}_{2}} \right)$ is given as:
$\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}$
So , the length \[PA\] is given as $PA=\sqrt{{{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}}}$
Now , we will square both sides to determine the value of \[P{{A}^{2}}\].
On squaring both sides , we get
${{\left( PA \right)}^{2}}=\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right).............\left( i \right)$
The length \[PB\] is given as $PB=\sqrt{{{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}}}$
Now , we will square both sides to determine the value of \[P{{B}^{2}}\].
On squaring both sides , we get
${{\left( PB \right)}^{2}}=\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right).............\left( ii \right)$
The length \[PC\] is given as $PC=\sqrt{{{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}}}$
Now , we will square both sides to determine the value of \[P{{C}^{2}}\].
On squaring both sides , we get
${{\left( PC \right)}^{2}}=\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right).............\left( iii \right)$
Now , we will find the value of $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$
Substituting $\left( i \right)$, $\left( ii \right)$ and $\left( iii \right)$ we get;
$a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}=a\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right)+b\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right)+c\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right)$ Now , we will find the condition for $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$ to be minimum .
We know for any function $f\left( x,y \right)$ to be minimum,
$\dfrac{\partial }{\partial x}f\left( x,y \right)=0$ and $\dfrac{\partial }{\partial y}f\left( x,y \right)=0$.
So , for $a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}}$ to be minimum,
$\dfrac{\partial }{\partial x}\left( a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}} \right)=0$ and
$\dfrac{\partial }{\partial y}\left( a{{\left( PA \right)}^{2}}+b{{\left( PB \right)}^{2}}+c{{\left( PC \right)}^{2}} \right)=0$
$\Rightarrow \dfrac{\partial }{\partial x}\left( a\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right)+b\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right)+c\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right) \right)=0$
$\Rightarrow 2x\left( a+b+c \right)-2\left( a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}} \right)=0$
$\Rightarrow x=\dfrac{a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{a+b+c}..............\left( iv \right)$
Again ,
$\Rightarrow \dfrac{\partial }{\partial y}\left( a\left( {{\left( x-{{x}_{1}} \right)}^{2}}+{{\left( y-{{y}_{1}} \right)}^{2}} \right)+b\left( {{\left( x-{{x}_{2}} \right)}^{2}}+{{\left( y-{{y}_{2}} \right)}^{2}} \right)+c\left( {{\left( x-{{x}_{3}} \right)}^{2}}+{{\left( y-{{y}_{3}} \right)}^{2}} \right) \right)=0$
$\Rightarrow 2y\left( a+b+c \right)-2\left( a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}} \right)=0$
$\Rightarrow y=\left( \dfrac{a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{a+b+c} \right)..............\left( v \right)$
So , the coordinates of $P\left( x,y \right)$ are given as;
$\left( \dfrac{a{{x}_{1}}+b{{x}_{2}}+c{{x}_{3}}}{a+b+c},\dfrac{a{{y}_{1}}+b{{y}_{2}}+c{{y}_{3}}}{a+b+c} \right)$ (From $\left( iv \right)$ and$\left( v \right)$)
So , we can clearly see that $P$ is the incentre of $\Delta ABC$.
Option (D) - Incentre is correct answer
Note: While partially differentiating the function with respect to \[x\], remember to treat \[y\] as a constant . Similarly , while partially differentiating the function with respect to \[y\], remember to treat \[x\] as a constant . Students generally make a mistake of treating the function as an implicit function and then they apply chain rule of differentiation , which is wrong .
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE