Answer
Verified
502.5k+ views
Hint-Make use of the property of similar triangles and try to solve this problem
Using the data given let us draw the figure
Let us consider the length of AM to be=x and MC =y
Also it is given that MN is parallel to BC, so BN is the transversal
So from this we get $\begin{gathered}
\angle ANM = \angle ABC \\
\angle AMN = \angle ACB \\
\end{gathered} $ (corresponding angles)
And also MP is parallel to NB.
So, we get $\angle ANM = \angle MPC$(Since MP is parallel to BN )
So, from this we can write $\vartriangle ANM \sim \vartriangle MPC \sim \vartriangle ABC$
So by theorem, ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
$\frac{{area\vartriangle ANM}}{{area\vartriangle ABC}} = \frac{{{{(AM)}^2}}}{{{{(AC)}^2}}} = \frac{{{x^2}}}{{{{(x + y)}^2}}}$ ------(1)
$\frac{{area\vartriangle MPC}}{{area\vartriangle ABC}} = \frac{{{{(MC)}^2}}}{{{{(AC)}^2}}} = \frac{{{y^2}}}{{{{(x + y)}^2}}}$----------(2)
From the data it is given that $area\vartriangle ANC + area\vartriangle MPC = area\vartriangle ABC - area\square NMCB = area\vartriangle ABC - \dfrac{5}{{18}}\vartriangle ABC = \dfrac{{13}}{{18}}area\vartriangle ABC$ Now ,let us add eq(1) and eq(2)
So we get
$\begin{gathered}
\frac{{13}}{{18}} = \frac{{{x^2} + {y^2}}}{{{{(x + y)}^2}}} \\
\Rightarrow 5{x^2} - 26xy + 5{y^2} = 0 \\
\Rightarrow 5{x^2} - 25xy - xy + 5{y^2} = 0 \\
\Rightarrow (5x - 1)(x - 5y) = 0 \\
\Rightarrow \frac{x}{y} = 5{\text{ OR }}\frac{x}{y} = \frac{1}{5} \\
\end{gathered} $
But, also it is given that x>y
Therefore the answer is 5
Option A is the correct answer
Note: Modify the equation and bring it to a simplified form based on the data which is given in the question
Using the data given let us draw the figure
Let us consider the length of AM to be=x and MC =y
Also it is given that MN is parallel to BC, so BN is the transversal
So from this we get $\begin{gathered}
\angle ANM = \angle ABC \\
\angle AMN = \angle ACB \\
\end{gathered} $ (corresponding angles)
And also MP is parallel to NB.
So, we get $\angle ANM = \angle MPC$(Since MP is parallel to BN )
So, from this we can write $\vartriangle ANM \sim \vartriangle MPC \sim \vartriangle ABC$
So by theorem, ratio of areas of two similar triangles is equal to the ratio of squares of their corresponding sides.
$\frac{{area\vartriangle ANM}}{{area\vartriangle ABC}} = \frac{{{{(AM)}^2}}}{{{{(AC)}^2}}} = \frac{{{x^2}}}{{{{(x + y)}^2}}}$ ------(1)
$\frac{{area\vartriangle MPC}}{{area\vartriangle ABC}} = \frac{{{{(MC)}^2}}}{{{{(AC)}^2}}} = \frac{{{y^2}}}{{{{(x + y)}^2}}}$----------(2)
From the data it is given that $area\vartriangle ANC + area\vartriangle MPC = area\vartriangle ABC - area\square NMCB = area\vartriangle ABC - \dfrac{5}{{18}}\vartriangle ABC = \dfrac{{13}}{{18}}area\vartriangle ABC$ Now ,let us add eq(1) and eq(2)
So we get
$\begin{gathered}
\frac{{13}}{{18}} = \frac{{{x^2} + {y^2}}}{{{{(x + y)}^2}}} \\
\Rightarrow 5{x^2} - 26xy + 5{y^2} = 0 \\
\Rightarrow 5{x^2} - 25xy - xy + 5{y^2} = 0 \\
\Rightarrow (5x - 1)(x - 5y) = 0 \\
\Rightarrow \frac{x}{y} = 5{\text{ OR }}\frac{x}{y} = \frac{1}{5} \\
\end{gathered} $
But, also it is given that x>y
Therefore the answer is 5
Option A is the correct answer
Note: Modify the equation and bring it to a simplified form based on the data which is given in the question
Recently Updated Pages
A long cylindrical shell carries positive surface charge class 12 physics JEE_Main
An aqueous solution containing liquid A M Wt 128 64 class null chemistry null
What is the mole ratio of benzene left PB0 150torr class null chemistry null
Which solution will show the maximum vapour pressure class null chemistry null
Mixture of volatile components A and B has total vapour class null chemistry null
256 g of sulphur in 100 g of CS2 has depression in class null chemistry null
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE