Answer
Verified
460.8k+ views
Hint: We start solving this problem by first multiplying the matrices A and B. Then we equate the result to matrix B as we are given that AB=B. Then we equate the corresponding elements in the both matrices and then we get two equations with variables p and q. Solving them we get an equation with a, b, c and d. Then by substituting the value of $a+d$ given and solving it we cam find the value of $ad-bc$.
Complete step by step answer:
We are given that $A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]\ne \left[ \begin{matrix}
0 \\
0 \\
\end{matrix} \right]$.
We are also given that AB=B and $a+d=2$.
As we are given that AB=B, let us multiply the matrices A and B and then equate the obtained result to B.
So, let us now consider the product AB.
$\begin{align}
& \Rightarrow AB=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right] \\
& \Rightarrow AB=\left[ \begin{matrix}
ap+bq \\
cp+dq \\
\end{matrix} \right] \\
\end{align}$
Now let us equate it to matrix B. Then we get,
$\Rightarrow \left[ \begin{matrix}
ap+bq \\
cp+dq \\
\end{matrix} \right]=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]$
So, now let us equate the first element in the both matrices.
\[\begin{align}
& \Rightarrow ap+bq=p \\
& \Rightarrow bq=\left( 1-a \right)p \\
& \Rightarrow q=\dfrac{\left( 1-a \right)p}{b}.........\left( 1 \right) \\
\end{align}\]
Now let us equate the second term in the above matrices. Then we get,
\[\begin{align}
& \Rightarrow cp+dq=q \\
& \Rightarrow \left( 1-d \right)q=cp \\
& \Rightarrow q=\dfrac{cp}{1-d}.........\left( 2 \right) \\
\end{align}\]
Now from equations (1) and (2) we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-a \right)p}{b}=\dfrac{cp}{1-d} \\
& \Rightarrow \left( 1-a \right)\left( 1-d \right)p=bcp \\
& \Rightarrow \left( 1-d-a+ad \right)p=bcp \\
& \Rightarrow \left( 1-\left( d+a \right)+ad-bc \right)p=0 \\
\end{align}\]
As, we are given that $p\ne 0$, we get,
\[\Rightarrow 1-\left( a+d \right)+ad-bc=0\]
We are given that $a+d=2$, so let us substitute it in the above equation. Then we get,
\[\begin{align}
& \Rightarrow 1-2+ad-bc=0 \\
& \Rightarrow -1+ad-bc=0 \\
& \Rightarrow ad-bc=1 \\
\end{align}\]
So, we get the value of $\left( ad-bc \right)$ as 1.
So, the correct answer is “1”.
Note: We can also solve this question by writing p in terms of q in equations (1) and (2) and then solving it as below.
Writing p in terms of q we get the equations (1) and (2) as,
\[\Rightarrow p=\dfrac{bq}{1-a}.........\left( 3 \right)\]
\[\Rightarrow p=\dfrac{\left( 1-d \right)q}{c}..........\left( 4 \right)\]
Equating them we get,
\[\begin{align}
& \Rightarrow \dfrac{bq}{1-a}=\dfrac{\left( 1-d \right)q}{c} \\
& \Rightarrow cbq=\left( 1-a \right)\left( 1-d \right)q \\
\end{align}\]
\[\begin{align}
& \Rightarrow cbq=\left( 1-a-d+ad \right)q \\
& \Rightarrow \left( 1-a-d+ad-bc \right)q=0 \\
\end{align}\]
As $q\ne 0$, we get,
\[\Rightarrow 1-\left( a+d \right)+ad-bc=0\]
We are given that $a+d=2$, so let us substitute it in the above equation. Then we get,
\[\begin{align}
& \Rightarrow 1-2+ad-bc=0 \\
& \Rightarrow -1+ad-bc=0 \\
& \Rightarrow ad-bc=1 \\
\end{align}\]
So, we get the value of $\left( ad-bc \right)$ as 1.
Complete step by step answer:
We are given that $A=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]$ and $B=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]\ne \left[ \begin{matrix}
0 \\
0 \\
\end{matrix} \right]$.
We are also given that AB=B and $a+d=2$.
As we are given that AB=B, let us multiply the matrices A and B and then equate the obtained result to B.
So, let us now consider the product AB.
$\begin{align}
& \Rightarrow AB=\left[ \begin{matrix}
a & b \\
c & d \\
\end{matrix} \right]\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right] \\
& \Rightarrow AB=\left[ \begin{matrix}
ap+bq \\
cp+dq \\
\end{matrix} \right] \\
\end{align}$
Now let us equate it to matrix B. Then we get,
$\Rightarrow \left[ \begin{matrix}
ap+bq \\
cp+dq \\
\end{matrix} \right]=\left[ \begin{matrix}
p \\
q \\
\end{matrix} \right]$
So, now let us equate the first element in the both matrices.
\[\begin{align}
& \Rightarrow ap+bq=p \\
& \Rightarrow bq=\left( 1-a \right)p \\
& \Rightarrow q=\dfrac{\left( 1-a \right)p}{b}.........\left( 1 \right) \\
\end{align}\]
Now let us equate the second term in the above matrices. Then we get,
\[\begin{align}
& \Rightarrow cp+dq=q \\
& \Rightarrow \left( 1-d \right)q=cp \\
& \Rightarrow q=\dfrac{cp}{1-d}.........\left( 2 \right) \\
\end{align}\]
Now from equations (1) and (2) we get,
\[\begin{align}
& \Rightarrow \dfrac{\left( 1-a \right)p}{b}=\dfrac{cp}{1-d} \\
& \Rightarrow \left( 1-a \right)\left( 1-d \right)p=bcp \\
& \Rightarrow \left( 1-d-a+ad \right)p=bcp \\
& \Rightarrow \left( 1-\left( d+a \right)+ad-bc \right)p=0 \\
\end{align}\]
As, we are given that $p\ne 0$, we get,
\[\Rightarrow 1-\left( a+d \right)+ad-bc=0\]
We are given that $a+d=2$, so let us substitute it in the above equation. Then we get,
\[\begin{align}
& \Rightarrow 1-2+ad-bc=0 \\
& \Rightarrow -1+ad-bc=0 \\
& \Rightarrow ad-bc=1 \\
\end{align}\]
So, we get the value of $\left( ad-bc \right)$ as 1.
So, the correct answer is “1”.
Note: We can also solve this question by writing p in terms of q in equations (1) and (2) and then solving it as below.
Writing p in terms of q we get the equations (1) and (2) as,
\[\Rightarrow p=\dfrac{bq}{1-a}.........\left( 3 \right)\]
\[\Rightarrow p=\dfrac{\left( 1-d \right)q}{c}..........\left( 4 \right)\]
Equating them we get,
\[\begin{align}
& \Rightarrow \dfrac{bq}{1-a}=\dfrac{\left( 1-d \right)q}{c} \\
& \Rightarrow cbq=\left( 1-a \right)\left( 1-d \right)q \\
\end{align}\]
\[\begin{align}
& \Rightarrow cbq=\left( 1-a-d+ad \right)q \\
& \Rightarrow \left( 1-a-d+ad-bc \right)q=0 \\
\end{align}\]
As $q\ne 0$, we get,
\[\Rightarrow 1-\left( a+d \right)+ad-bc=0\]
We are given that $a+d=2$, so let us substitute it in the above equation. Then we get,
\[\begin{align}
& \Rightarrow 1-2+ad-bc=0 \\
& \Rightarrow -1+ad-bc=0 \\
& \Rightarrow ad-bc=1 \\
\end{align}\]
So, we get the value of $\left( ad-bc \right)$ as 1.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE