
Let $\alpha $ and $\beta $ be two real roots of the equation $\left( {k + 1} \right){\tan ^2}x - \sqrt 2 \lambda \tan x = \left( {1 - k} \right),$ where k $ \ne $1 and $\lambda $ are real numbers. If ${\tan ^2}\left( {\alpha + \beta } \right) = 50$. Then a value of $\lambda $ is :
Answer
493.5k+ views
Hint: We have given $\alpha $ and $\beta $ as two real roots that means when we put $\alpha $ and $\beta $ in the place of x then the equation will be satisfied. Given a quadratic equation is quadratic in tan and hence the roots of the equation will be $\tan \alpha $ and $\tan \beta $. Now apply the relation of sum of roots and product of roots to proceed further.
Complete step-by-step answer:
We have given
$\left( {k + 1} \right){\tan ^2}x - \sqrt 2 \lambda \tan x = \left( {1 - k} \right)$
We can rewrite it as :
$\left( {k + 1} \right){\tan ^2}x - \sqrt 2 \lambda \tan x + \left( {k - 1} \right) = 0$
Roots of this quadratic equation are $\tan \alpha $ and $\tan \beta $.
From the property of sum of roots and product of roots we can write
$\tan \alpha + \tan \beta = \dfrac{{\sqrt 2 \lambda }}{{\left( {k + 1} \right)}}$
$\tan \alpha \times \tan \beta = \dfrac{{\left( {k - 1} \right)}}{{\left( {k + 1} \right)}}$
And we know the formula
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha .\tan \beta }}$
On putting values from above we get,
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{\sqrt 2 \lambda }}{{\left( {k + 1} \right)}}}}{{1 - \dfrac{{\left( {k - 1} \right)}}{{\left( {k + 1} \right)}}}}$
On further solving we get,
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{\sqrt 2 \lambda }}{{\left( {k + 1} \right)}}}}{{\dfrac{{\left( {k + 1} \right) - \left( {k - 1} \right)}}{{\left( {k + 1} \right)}}}}$
On cancel out we get,
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\sqrt 2 \lambda }}{2} = \dfrac{\lambda }{{\sqrt 2 }}$
And hence on squaring we get,
${\tan ^2}\left( {\alpha + \beta } \right) = \dfrac{{{\lambda ^2}}}{2}$
And we have given in the question ${\tan ^2}\left( {\alpha + \beta } \right) = 50$
On comparing both equation we get
$
\dfrac{{{\lambda ^2}}}{2} = 50 \\
{\lambda ^2} = 100 \\
\therefore \lambda = \pm 10 \\
$
Note: Whenever we get this type of question the key concept of solving is we have to remember the formula of quadratic equations like properties on sum of roots and product of roots. And also remember $\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha .\tan \beta }}$ this type of formula are very helpful in solving this type of question.
Complete step-by-step answer:
We have given
$\left( {k + 1} \right){\tan ^2}x - \sqrt 2 \lambda \tan x = \left( {1 - k} \right)$
We can rewrite it as :
$\left( {k + 1} \right){\tan ^2}x - \sqrt 2 \lambda \tan x + \left( {k - 1} \right) = 0$
Roots of this quadratic equation are $\tan \alpha $ and $\tan \beta $.
From the property of sum of roots and product of roots we can write
$\tan \alpha + \tan \beta = \dfrac{{\sqrt 2 \lambda }}{{\left( {k + 1} \right)}}$
$\tan \alpha \times \tan \beta = \dfrac{{\left( {k - 1} \right)}}{{\left( {k + 1} \right)}}$
And we know the formula
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha .\tan \beta }}$
On putting values from above we get,
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{\sqrt 2 \lambda }}{{\left( {k + 1} \right)}}}}{{1 - \dfrac{{\left( {k - 1} \right)}}{{\left( {k + 1} \right)}}}}$
On further solving we get,
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\dfrac{{\sqrt 2 \lambda }}{{\left( {k + 1} \right)}}}}{{\dfrac{{\left( {k + 1} \right) - \left( {k - 1} \right)}}{{\left( {k + 1} \right)}}}}$
On cancel out we get,
$\tan \left( {\alpha + \beta } \right) = \dfrac{{\sqrt 2 \lambda }}{2} = \dfrac{\lambda }{{\sqrt 2 }}$
And hence on squaring we get,
${\tan ^2}\left( {\alpha + \beta } \right) = \dfrac{{{\lambda ^2}}}{2}$
And we have given in the question ${\tan ^2}\left( {\alpha + \beta } \right) = 50$
On comparing both equation we get
$
\dfrac{{{\lambda ^2}}}{2} = 50 \\
{\lambda ^2} = 100 \\
\therefore \lambda = \pm 10 \\
$
Note: Whenever we get this type of question the key concept of solving is we have to remember the formula of quadratic equations like properties on sum of roots and product of roots. And also remember $\tan \left( {\alpha + \beta } \right) = \dfrac{{\tan \alpha + \tan \beta }}{{1 - \tan \alpha .\tan \beta }}$ this type of formula are very helpful in solving this type of question.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
State the laws of reflection of light

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

What is the modal class for the following table given class 11 maths CBSE

How do I convert ms to kmh Give an example class 11 physics CBSE

Give an example of a solid solution in which the solute class 11 chemistry CBSE
